Differentiable rendering-based pose-conditioned human image generation

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Conditional human image generation, or generation of human images with specified pose based on one or more reference images, is an inherently ill-defined problem, as there can be multiple plausible appearance for parts that are occluded in the reference. Using multiple images can mitigate this problem while boosting the performance. In this work, we introduce a differentiable vertex and edge renderer for incorporating the pose information to realize human image generation conditioned on multiple reference images. The differentiable renderer has parameters that can be jointly optimized with other parts of the system to obtain better results by learning more meaningful shape representation of human pose. We evaluate our method on the Market-1501 and DeepFashion datasets and comparison with existing approaches validates the effectiveness of our approach.

Original languageEnglish
Title of host publicationProceedings - 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2021
PublisherIEEE Computer Society
Pages3916-3920
Number of pages5
ISBN (Electronic)9781665448994
DOIs
Publication statusPublished - 2021 Jun
Event2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2021 - Virtual, Online, United States
Duration: 2021 Jun 192021 Jun 25

Publication series

NameIEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops
ISSN (Print)2160-7508
ISSN (Electronic)2160-7516

Conference

Conference2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2021
Country/TerritoryUnited States
CityVirtual, Online
Period21/6/1921/6/25

ASJC Scopus subject areas

  • Computer Vision and Pattern Recognition
  • Electrical and Electronic Engineering

Cite this