TY - GEN
T1 - Direct formation of homogeneous DNA-probe surface on polyimide thin film by vapor deposition polymerization
AU - Kira, Atsushi
AU - Kim, Hyonchol
AU - Hasegawa, Yoshio
AU - Takahashi, Yoshikazu
AU - Okano, Kazunori
AU - Yasuda, Kenji
PY - 2005
Y1 - 2005
N2 - For the single-molecule level quantitative measurement of target mRNAs attached on the DNA chip, one of the most important things is how to maintain the homogeneous, desirable-spaced arrangement of DNA-probes on the surface of the chip. Thus we have developed the novel method for decorating DNA-probes on the chip with desired intervals and homogeneous concentration applying the vapor deposition polymerization (VDP) technique, in which hexamethylene diisocyanate (HDI) and 3,5-diaminobenzonic acid (DBA) molecules were polymerized directly on the chip to form the polymer thin layer. The interval of the reactive carboxyl-group (-COOH) on the side-chains of DBA was controlled to become 2.0 nm by choosing another molecule having this length (HDI). After we made 10-nm-thick HDI-DBA polymer film on the chip, we attached amine-group of the thiol-, amine-decorated DNA-probe to the carboxyl-group of DBA. Then we checked the spatial arrangement and homogeneity of DNA-probes attached on the polymer film using 20-nm gold (Au) nano-particles. By the scanning electric microscopy observation, we first confirmed the spatial distribution of Au nano-particles on the chip was 254 particles/μ m2, whereas the less than 1 particles/μ m2 for the control sample, in which no DNA-probe was attached on the film. Moreover, the standard deviation of localization of particle distribution was less than 8 particles differences / 254 particles/μ m2, which is a magnitude better than the conventional silane-coupling method. The result indicates the potential of our method to form the homogeneous DNA-probe surface on the.
AB - For the single-molecule level quantitative measurement of target mRNAs attached on the DNA chip, one of the most important things is how to maintain the homogeneous, desirable-spaced arrangement of DNA-probes on the surface of the chip. Thus we have developed the novel method for decorating DNA-probes on the chip with desired intervals and homogeneous concentration applying the vapor deposition polymerization (VDP) technique, in which hexamethylene diisocyanate (HDI) and 3,5-diaminobenzonic acid (DBA) molecules were polymerized directly on the chip to form the polymer thin layer. The interval of the reactive carboxyl-group (-COOH) on the side-chains of DBA was controlled to become 2.0 nm by choosing another molecule having this length (HDI). After we made 10-nm-thick HDI-DBA polymer film on the chip, we attached amine-group of the thiol-, amine-decorated DNA-probe to the carboxyl-group of DBA. Then we checked the spatial arrangement and homogeneity of DNA-probes attached on the polymer film using 20-nm gold (Au) nano-particles. By the scanning electric microscopy observation, we first confirmed the spatial distribution of Au nano-particles on the chip was 254 particles/μ m2, whereas the less than 1 particles/μ m2 for the control sample, in which no DNA-probe was attached on the film. Moreover, the standard deviation of localization of particle distribution was less than 8 particles differences / 254 particles/μ m2, which is a magnitude better than the conventional silane-coupling method. The result indicates the potential of our method to form the homogeneous DNA-probe surface on the.
UR - http://www.scopus.com/inward/record.url?scp=33847194686&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=33847194686&partnerID=8YFLogxK
U2 - 10.1109/imnc.2005.203809
DO - 10.1109/imnc.2005.203809
M3 - Conference contribution
AN - SCOPUS:33847194686
SN - 4990247221
SN - 9784990247225
T3 - Digest of Papers - Microprocesses and Nanotechnology 2005: 2005 International Microprocesses and Nanotechnology Conference
SP - 204
BT - Digest of Papers - Microprocesses and Nanotechnology 2005
PB - IEEE Computer Society
T2 - 2005 International Microprocesses and Nanotechnology Conference
Y2 - 25 October 2005 through 28 October 2005
ER -