Distributed lag interrupted time series model for unclear intervention timing: effect of a statement of emergency during COVID-19 pandemic

Daisuke Yoneoka*, Takayuki Kawashima, Yuta Tanoue, Shuhei Nomura, Akifumi Eguchi

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

Abstract

Background: Interrupted time series (ITS) analysis has become a popular design to evaluate the effects of health interventions. However, the most common formulation for ITS, the linear segmented regression, is not always adequate, especially when the timing of the intervention is unclear. In this study, we propose a new model to overcome this limitation. Methods: We propose a new ITS model, ARIMAITS-DL, that combines (1) the Autoregressive Integrated Moving Average (ARIMA) model and (2) distributed lag functional terms. The ARIMA technique allows us to model autocorrelation, which is frequently observed in time series data, and the decaying cumulative effect of the intervention. By contrast, the distributed lag functional terms represent the idea that the intervention effect does not start at a fixed time point but is distributed over a certain interval (thus, the intervention timing seems unclear). We discuss how to select the distribution of the effect, the model construction process, diagnosing the model fitting, and interpreting the results. Further, our model is implemented as an example of a statement of emergency (SoE) during the coronavirus disease 2019 pandemic in Japan. Results: We illustrate the ARIMAITS-DL model with some practical distributed lag terms to examine the effect of the SoE on human mobility in Japan. We confirm that the SoE was successful in reducing the movement of people (15.0–16.0% reduction in Tokyo), at least between February 20 and May 19, 2020. We also provide the R code for other researchers to easily replicate our method. Conclusions: Our model, ARIMAITS-DL, is a useful tool as it can account for the unclear intervention timing and distributed lag effect with autocorrelation and allows for flexible modeling of different types of impacts such as uniformly or normally distributed impact over time.

Original languageEnglish
Article number202
JournalBMC Medical Research Methodology
Volume22
Issue number1
DOIs
Publication statusPublished - 2022 Dec

Keywords

  • Autoregressive integrated moving average model
  • COVID-19
  • Distributed lag
  • Human mobility index
  • Interrupted time series
  • Unclear intervention timing

ASJC Scopus subject areas

  • Epidemiology
  • Health Informatics

Fingerprint

Dive into the research topics of 'Distributed lag interrupted time series model for unclear intervention timing: effect of a statement of emergency during COVID-19 pandemic'. Together they form a unique fingerprint.

Cite this