TY - JOUR
T1 - Doped high- Tc cuprate superconductors elucidated in the light of zeros and poles of the electronic Green's function
AU - Sakai, Shiro
AU - Motome, Yukitoshi
AU - Imada, Masatoshi
PY - 2010/10/4
Y1 - 2010/10/4
N2 - We study electronic structure of hole- and electron-doped Mott insulators in the two-dimensional Hubbard model to reach a unified picture for the normal state of cuprate high- Tc superconductors. By using a cluster extension of the dynamical mean-field theory, we demonstrate that structure of coexisting zeros and poles of the single-particle Green's function holds the key to understand Mott physics in the underdoped region. We show evidence for the emergence of non-Fermi-liquid phase caused by the topological quantum phase transition of Fermi surface by analyzing low-energy charge dynamics. The spectra calculated in a wide range of energy and momentum reproduce various anomalous properties observed in experiments for the high- Tc cuprates. Our results reveal that the pseudogap in hole-doped cuprates has a d -wavelike structure only below the Fermi level while it retains non- d -wave structure with a fully opened gap above the Fermi energy even in the nodal direction due to a zero surface extending over the entire Brillouin zone. In addition to the non- d -wave pseudogap, the present comprehensive identifications of the spectral asymmetry as to the Fermi energy, the Fermi arc, and the back-bending behavior of the dispersion, waterfall, and low-energy kink, in agreement with the experimental anomalies of the cuprates, do not support that these originate from (the precursors of) symmetry breakings such as the preformed pairing and the d -density-wave fluctuations, but support that they are direct consequences of the proximity to the Mott insulator. Several possible experiments are further proposed to prove or disprove our zero mechanism.
AB - We study electronic structure of hole- and electron-doped Mott insulators in the two-dimensional Hubbard model to reach a unified picture for the normal state of cuprate high- Tc superconductors. By using a cluster extension of the dynamical mean-field theory, we demonstrate that structure of coexisting zeros and poles of the single-particle Green's function holds the key to understand Mott physics in the underdoped region. We show evidence for the emergence of non-Fermi-liquid phase caused by the topological quantum phase transition of Fermi surface by analyzing low-energy charge dynamics. The spectra calculated in a wide range of energy and momentum reproduce various anomalous properties observed in experiments for the high- Tc cuprates. Our results reveal that the pseudogap in hole-doped cuprates has a d -wavelike structure only below the Fermi level while it retains non- d -wave structure with a fully opened gap above the Fermi energy even in the nodal direction due to a zero surface extending over the entire Brillouin zone. In addition to the non- d -wave pseudogap, the present comprehensive identifications of the spectral asymmetry as to the Fermi energy, the Fermi arc, and the back-bending behavior of the dispersion, waterfall, and low-energy kink, in agreement with the experimental anomalies of the cuprates, do not support that these originate from (the precursors of) symmetry breakings such as the preformed pairing and the d -density-wave fluctuations, but support that they are direct consequences of the proximity to the Mott insulator. Several possible experiments are further proposed to prove or disprove our zero mechanism.
UR - http://www.scopus.com/inward/record.url?scp=78049423562&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=78049423562&partnerID=8YFLogxK
U2 - 10.1103/PhysRevB.82.134505
DO - 10.1103/PhysRevB.82.134505
M3 - Article
AN - SCOPUS:78049423562
SN - 1098-0121
VL - 82
JO - Physical Review B - Condensed Matter and Materials Physics
JF - Physical Review B - Condensed Matter and Materials Physics
IS - 13
M1 - 134505
ER -