Abstract
The electronic structure of the La2-xSrxCuO4 (LSCO) system has been studied by angle-resolved photo-emission spectroscopy (ARPES). We report on the evolution of the Fermi surface, the superconducting gap, and the band dispersion around the extended saddle point k = (π,0) with hole doping in the superconducting and metallic phases. As hole concentration x decreases, the flat band at (π,0) moves from above the Fermi level (EF) for x>0.2 to below EF for x<0.2, and is further lowered down to x = 0.05. From the leading-edge shift of ARPES spectra, the magnitude of the superconducting gap around (π,0) is found to monotonically increase as x decreases from x = 0.30 down to x = 0.05 even though Tc decreases in the underdoped region, and the superconducting gap appears to smoothly evolve into the normal-state gap at x = 0.05. It is shown that the energy scales characterizing these low-energy structures have similar doping dependences. For the heavily overdoped sample (x = 0.30), the band dispersion and the ARPES spectral line shape are analyzed using a simple phenomenological self-energy form, and the electronic effective mass enhancement factor m*/mb≃2 has been found. As the hole concentration decreases, an incoherent component that cannot be described within the simple self-energy analysis grows intense in the high-energy tail of the ARPES peak. Some unusual features of the electronic structure observed for the underdoped region (x≤0.10) are consistent with numerical works on the stripe model.
Original language | English |
---|---|
Article number | 094504 |
Pages (from-to) | 945041-9450411 |
Number of pages | 8505371 |
Journal | Physical Review B - Condensed Matter and Materials Physics |
Volume | 65 |
Issue number | 9 |
Publication status | Published - 2002 Mar 1 |
Externally published | Yes |
ASJC Scopus subject areas
- Electronic, Optical and Magnetic Materials
- Condensed Matter Physics