TY - JOUR
T1 - Down-regulation of the mitochondrial translation system during terminal differentiation of HL-60 cells by 12-O-tetradecanoyl-1-phorbol-13-acetate
T2 - Comparison with the cytoplasmic translation system
AU - Takeuchi, Nono
AU - Ueda, Takuya
PY - 2003/11/14
Y1 - 2003/11/14
N2 - Mitochondrial (mt) biogenesis depends on both the nuclear and mt genomes, and a coordination of these two genetic systems is necessary for proper cell functioning. Little is known about the regulatory mechanisms of mt translation or about the expression of mt translation factors. Here, we studied the expression of mt translation factors during 12-O-tetradecanoyl-1-phorbol-13-acetate (TPA)-induced terminal differentiation of HL-60 cells. For all mt translation factors investigated, mRNA expression was markedly downregulated in a coordinate and specific manner, whereas mRNA levels for the cytoplasmic translation factors showed only a slight reduction. An actinomycin D chase study and nuclear run-on assay revealed that the TPA-induced decrease in mt elongation factor Tu (EF-Tumt) mRNA mainly results from decreased mRNA stability. Polysome analysis showed that there was no significant translational control of mt translation factor (EF-Tumt, ribosomal proteins L7/L12mt and S12mt) mRNA expression during differentiation. Thus, the decreased protein level of one of these mt translation factors (EF-Tumt) simply reflects its decreased mRNA level. It was also demonstrated by pulse labeling of mt translation products that the down-regulation of mt translational activity is actually associated with down-regulated mt translation factor expression during cellular differentiation. Our results illustrate that the regulatory mechanisms of mt translational activity upon terminal differentiation (in response to the growth arrest) is different to that of the cytoplasmic system, where the control of mRNA translational efficiency of major translation factors is the central mechanism for their down-regulation.
AB - Mitochondrial (mt) biogenesis depends on both the nuclear and mt genomes, and a coordination of these two genetic systems is necessary for proper cell functioning. Little is known about the regulatory mechanisms of mt translation or about the expression of mt translation factors. Here, we studied the expression of mt translation factors during 12-O-tetradecanoyl-1-phorbol-13-acetate (TPA)-induced terminal differentiation of HL-60 cells. For all mt translation factors investigated, mRNA expression was markedly downregulated in a coordinate and specific manner, whereas mRNA levels for the cytoplasmic translation factors showed only a slight reduction. An actinomycin D chase study and nuclear run-on assay revealed that the TPA-induced decrease in mt elongation factor Tu (EF-Tumt) mRNA mainly results from decreased mRNA stability. Polysome analysis showed that there was no significant translational control of mt translation factor (EF-Tumt, ribosomal proteins L7/L12mt and S12mt) mRNA expression during differentiation. Thus, the decreased protein level of one of these mt translation factors (EF-Tumt) simply reflects its decreased mRNA level. It was also demonstrated by pulse labeling of mt translation products that the down-regulation of mt translational activity is actually associated with down-regulated mt translation factor expression during cellular differentiation. Our results illustrate that the regulatory mechanisms of mt translational activity upon terminal differentiation (in response to the growth arrest) is different to that of the cytoplasmic system, where the control of mRNA translational efficiency of major translation factors is the central mechanism for their down-regulation.
UR - http://www.scopus.com/inward/record.url?scp=0242664932&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0242664932&partnerID=8YFLogxK
U2 - 10.1074/jbc.M307620200
DO - 10.1074/jbc.M307620200
M3 - Article
C2 - 12952954
AN - SCOPUS:0242664932
SN - 0021-9258
VL - 278
SP - 45318
EP - 45324
JO - Journal of Biological Chemistry
JF - Journal of Biological Chemistry
IS - 46
ER -