Dynamic articulatory model based on multidimensional invariant-feature task representation

Tokihiko Kaburagi*, Masaaki Honda

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

9 Citations (Scopus)


A dynamic model of articulatory movements is introduced. The research presented herein focuses on the method of representing the phonemic tasks, i.e., phoneme-specific articulatory targets. Phonemic tasks in our model are formally defined using invariant features of articulatory posture. The invariant features used in the model are characterized by the linear transformation of articulatory variables and found using a statistical analysis of measured articulatory movements, in which the articulatory features with minimum variability are taken to be the invariant features. Articulatory movements making vocal-tract constrictions or relative movements among articulators reflecting task-sharing structures are typical examples of the features found to have low variability. In the trajectory formation of articulatory movements, the dimension number of the phonemic task is set at a smaller value than that of articulatory variables. Consequently, the kinematic states of the articulators are partly constrained at given time instants by a sequence of phonemic tasks, and there remain unconstrained degrees of freedom of articulatory variables. Articulatory movements are determined so that they simultaneously satisfy given phonemic tasks and dynamic smoothness constraints. The dynamic smoothness constraints coupled with the underspecified phonemic targets allow our model to explain contextual articulatory variability using context-independent phonemic tasks. Finally, the capability of the model for predicting actual articulatory movements is quantitatively investigated using empirical articulatory data.

Original languageEnglish
Pages (from-to)441-452
Number of pages12
JournalJournal of the Acoustical Society of America
Issue number1
Publication statusPublished - 2001
Externally publishedYes

ASJC Scopus subject areas

  • Arts and Humanities (miscellaneous)
  • Acoustics and Ultrasonics


Dive into the research topics of 'Dynamic articulatory model based on multidimensional invariant-feature task representation'. Together they form a unique fingerprint.

Cite this