Dynamical phase transition in Floquet optical bistable systems: An approach from finite-size quantum systems

Tatsuhiko Shirai, Synge Todo, Seiji Miyashita

Research output: Contribution to journalArticlepeer-review

1 Citation (Scopus)

Abstract

We study a dynamical phase transition in optical bistable systems subject to a time-periodic driving field. The phase transition occurs in the structure of a limit cycle as a function of the frequency of the driving field. In the thermodynamic limit, a single limit cycle is divided into two separated limit cycles at the transition point. In finite-size systems, however, there is always a single limit cycle due to the quantum tunneling effect. We use a Floquet dissipative map, which is a time-evolution operator over one period in dynamics given by a quantum master equation, and discuss the decay rate of relaxation dynamics into the limit cycle based on the dominant eigenvalue of the map. We found that the decay rate exhibits qualitatively different system-size dependence before and after the phase transition and it shows a finite-size scaling of spinodal phenomena around the transition point. The present paper provides a systematic way of studying a dynamical phase transition observed in time-periodically driven open systems in terms of the Floquet dissipative map.

Original languageEnglish
Article number013809
JournalPhysical Review A
Volume101
Issue number1
DOIs
Publication statusPublished - 2020 Jan 10

ASJC Scopus subject areas

  • Atomic and Molecular Physics, and Optics

Fingerprint

Dive into the research topics of 'Dynamical phase transition in Floquet optical bistable systems: An approach from finite-size quantum systems'. Together they form a unique fingerprint.

Cite this