TY - GEN
T1 - Effect of Au nanoporous structure on bonding strength
AU - Matsunaga, Kaori
AU - Kim, Min Su
AU - Nishikawa, Hiroshi
AU - Saito, Mikiko
AU - Mizuno, Jun
N1 - Publisher Copyright:
© 2015 The Japan Institute of Electronics Packaging.
PY - 2015/5/20
Y1 - 2015/5/20
N2 - Recently, several materials and joining processes have been proposed as alternatives to high-Pb-containing solders. There has been an increasing focus on developing solid-state bonding interconnection processes based on sintering, such as bonding techniques using Ag or Cu nanoparticles. However, sintered nanoparticle layers tend to have voids that result from solvent residue and dispersing agents. The voids in the sintered layer degrade the reliability of the joints. Therefore, we have proposed a solid-state bonding technique without solvents and flux using a nanoporous sheet. A nanoporous sheet can be made from binary alloy systems by dissolving the less noble component from the alloy selectively. A bonding technique using nanomaterials could reduce the bonding temperature because of the high reactive nanoporous surface. In this study, Au nanoporous sheets were fabricated by dealloying a Au-Ag alloy into an HNO3 solution, and the effects of the Au nanoporous structure on joint bonding strength were investigated. After dealloying, Au nanoporous sheets were set between bare Cu substrates. The samples were bonded at various process temperatures under a nitrogen atmosphere. As a result, the joint bonded at 300 °C, using the Au nanoporous sheet with a dealloying time of 1 h, showed a high shear strength of about 20 MPa. It was found that joining using Au nanoporous bonding was successfully achieved.
AB - Recently, several materials and joining processes have been proposed as alternatives to high-Pb-containing solders. There has been an increasing focus on developing solid-state bonding interconnection processes based on sintering, such as bonding techniques using Ag or Cu nanoparticles. However, sintered nanoparticle layers tend to have voids that result from solvent residue and dispersing agents. The voids in the sintered layer degrade the reliability of the joints. Therefore, we have proposed a solid-state bonding technique without solvents and flux using a nanoporous sheet. A nanoporous sheet can be made from binary alloy systems by dissolving the less noble component from the alloy selectively. A bonding technique using nanomaterials could reduce the bonding temperature because of the high reactive nanoporous surface. In this study, Au nanoporous sheets were fabricated by dealloying a Au-Ag alloy into an HNO3 solution, and the effects of the Au nanoporous structure on joint bonding strength were investigated. After dealloying, Au nanoporous sheets were set between bare Cu substrates. The samples were bonded at various process temperatures under a nitrogen atmosphere. As a result, the joint bonded at 300 °C, using the Au nanoporous sheet with a dealloying time of 1 h, showed a high shear strength of about 20 MPa. It was found that joining using Au nanoporous bonding was successfully achieved.
KW - Au nanoporous
KW - dealloying
KW - die attach
KW - shear strength
KW - sintering
UR - http://www.scopus.com/inward/record.url?scp=84936128976&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84936128976&partnerID=8YFLogxK
U2 - 10.1109/ICEP-IAAC.2015.7111127
DO - 10.1109/ICEP-IAAC.2015.7111127
M3 - Conference contribution
AN - SCOPUS:84936128976
T3 - ICEP-IAAC 2015 - 2015 International Conference on Electronic Packaging and iMAPS All Asia Conference
SP - 830
EP - 833
BT - ICEP-IAAC 2015 - 2015 International Conference on Electronic Packaging and iMAPS All Asia Conference
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 2015 International Conference on Electronic Packaging and iMAPS All Asia Conference, ICEP-IAAC 2015
Y2 - 14 April 2015 through 17 April 2015
ER -