Effect of cold acclimation on antioxidant status in cold acclimated skaters

Hee Hong Jung, Jin Kim Ki, Katsuhiko Suzuki, In Seon Lee*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

12 Citations (Scopus)


We investigated whether cold acclimation leads to increased activity of the antioxidant defense enzymes and muscle injury. Comparisons were between short track skaters (n=6) and inline skaters (n=6) during rest and at submaximal cycling (65% VO2max) in cold (ambient temperature: 5±1°C, relative humidity: 41±8%) and warm conditions (ambient temperature: 21±1°C, relative humidity: 35±5%), during 60 min, respectively, and during the recovery phase. Erythrocyte superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSHpx), reduced glutathione (GSH), thiobarbituric substance acid (TBARS), serum creatine kinase (CK), lactate dehydrogenase (LDH), plasma myoglobin (Mb) and cortisol were determined. Activities of CAT and GSHpx and the level of GSH and TBARS in erythrocyte and the level of LDH in serum were elevated in cold acclimated subjects. We suggested that the compensatory increase in antioxidative defense enzymes resulting from long-term cold exposure may reflect the elevated reactive oxygen species (ROS) production and muscle injury at this environment acclimation.

Original languageEnglish
Pages (from-to)255-262
Number of pages8
JournalJournal of physiological anthropology
Issue number5
Publication statusPublished - 2008


  • Antioxidant defense enzymes
  • Cold acclimation
  • Muscle injury

ASJC Scopus subject areas

  • Human Factors and Ergonomics
  • Physiology
  • Orthopedics and Sports Medicine
  • Anthropology
  • Public Health, Environmental and Occupational Health
  • Physiology (medical)


Dive into the research topics of 'Effect of cold acclimation on antioxidant status in cold acclimated skaters'. Together they form a unique fingerprint.

Cite this