TY - JOUR
T1 - Effect of exercise intensity on circulating hepatokine concentrations in healthy men
AU - Willis, Scott A.
AU - Sargeant, Jack A.
AU - Thackray, Alice E.
AU - Yates, Thomas
AU - Stensel, David J.
AU - Aithal, Guruprasad P.
AU - King, James A.
N1 - Publisher Copyright:
© 2019, Canadian Science Publishing. All rights reserved.
PY - 2019
Y1 - 2019
N2 - Fibroblast growth factor 21 (FGF21), follistatin and leukocyte cell-derived chemotaxin 2 (LECT2) are novel hepatokines that are modulated by metabolic stresses. This study investigated whether exercise intensity modulates the hepatokine response to acute exercise. Ten young, healthy men undertook three 8-h experimental trials: moderate-intensity exercise (MOD; 55% peak oxygen uptake), high-intensity exercise (HIGH; 75% peak oxygen uptake), and control (CON; rest), in a randomised, counterbalanced order. Exercise trials commenced with a treadmill run of varied duration to match gross exercise energy expenditure between trials (MOD vs HIGH; 2475 ± 70 vs 2488 ± 58 kJ). Circulating FGF21, follistatin, LECT2, glucagon, insulin, glucose and nonesterified fatty acids (NEFA) were measured before exercise and at 0, 1, 2, 4, and 7 h postexercise. Plasma FGF21 concentrations were increased up to 4 h postexercise compared with CON (P ≤ 0.022) with greater increases observed at 1, 2, and 4 h postexercise during HIGH versus MOD (P ≤ 0.025). Irrespective of intensity (P ≥ 0.606), plasma follistatin concentrations were elevated at 4 and 7 h postexercise (P ≤ 0.053). Plasma LECT2 concentrations were increased immediately postexercise (P ≤ 0.046) but were not significant after correcting for plasma volume shifts. Plasma glucagon (1 h; P = 0.032) and NEFA (4 and 7 h; P ≤ 0.029) responses to exercise were accentuated in HIGH versus MOD. These findings demonstrate that acute exercise augments circulating FGF21 and follistatin. Exercise-induced changes in FGF21 are intensity-dependent and may support the greater metabolic benefit of high-intensity exercise.
AB - Fibroblast growth factor 21 (FGF21), follistatin and leukocyte cell-derived chemotaxin 2 (LECT2) are novel hepatokines that are modulated by metabolic stresses. This study investigated whether exercise intensity modulates the hepatokine response to acute exercise. Ten young, healthy men undertook three 8-h experimental trials: moderate-intensity exercise (MOD; 55% peak oxygen uptake), high-intensity exercise (HIGH; 75% peak oxygen uptake), and control (CON; rest), in a randomised, counterbalanced order. Exercise trials commenced with a treadmill run of varied duration to match gross exercise energy expenditure between trials (MOD vs HIGH; 2475 ± 70 vs 2488 ± 58 kJ). Circulating FGF21, follistatin, LECT2, glucagon, insulin, glucose and nonesterified fatty acids (NEFA) were measured before exercise and at 0, 1, 2, 4, and 7 h postexercise. Plasma FGF21 concentrations were increased up to 4 h postexercise compared with CON (P ≤ 0.022) with greater increases observed at 1, 2, and 4 h postexercise during HIGH versus MOD (P ≤ 0.025). Irrespective of intensity (P ≥ 0.606), plasma follistatin concentrations were elevated at 4 and 7 h postexercise (P ≤ 0.053). Plasma LECT2 concentrations were increased immediately postexercise (P ≤ 0.046) but were not significant after correcting for plasma volume shifts. Plasma glucagon (1 h; P = 0.032) and NEFA (4 and 7 h; P ≤ 0.029) responses to exercise were accentuated in HIGH versus MOD. These findings demonstrate that acute exercise augments circulating FGF21 and follistatin. Exercise-induced changes in FGF21 are intensity-dependent and may support the greater metabolic benefit of high-intensity exercise.
KW - Exercise
KW - FGF21
KW - Follistatin
KW - Hepatokines
KW - Insulin resistance
KW - LECT2
KW - Liver
KW - Physical activity
UR - http://www.scopus.com/inward/record.url?scp=85072717149&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85072717149&partnerID=8YFLogxK
U2 - 10.1139/apnm-2018-0818
DO - 10.1139/apnm-2018-0818
M3 - Article
C2 - 31453723
AN - SCOPUS:85072717149
SN - 1715-5312
VL - 44
SP - 1065
EP - 1072
JO - Applied Physiology, Nutrition and Metabolism
JF - Applied Physiology, Nutrition and Metabolism
IS - 10
ER -