Effect of surface area of grain boundaries on stress relaxation behavior in pure copper over wide range of grain sizes

Yurina Suzuki*, Kota Ueno, Kodai Murasawa, Yoshinori Kusuda, Masato Takamura, Tomoyuki Hakoyama, Takayuki Hama, Shinsuke Suzuki

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

5 Citations (Scopus)


The objective of this study was to investigate the effect of the surface area of grain boundaries on the stress relaxation behavior over a wide range of grain sizes. Stress relaxation tests were performed using single crystal (SC), coarse grained (CG), and ultra-fine grained (UFG) samples. Additionally, pure copper was used to eliminate the effects of the solid solution and precipitates. The initial stress relaxation behavior was investigated using the stress relaxation rate at 0.2 s after the beginning of strain holding. Furthermore, the internal stress was investigated as the end of the stress relaxation behavior. The stress relaxation rate increased with the surface area of the grain boundaries per unit volume (SV). Although the activation volume of the UFG sample was smaller than that of the CG samples, the stress relaxation rate was higher. This suggested that the grain boundary sliding contributed to the stress reduction of the UFG sample. Therefore, the stress relaxation rate increased with SV even if grain boundary sliding occurred. The internal stress increased with SV, except for the SC sample. Furthermore, in the CG range, the internal stress could be approximated by the Hall-Petch (H-P) relation with a coefficient almost equal to that of the flow stress. This behavior of internal stress inherently explains the dislocation pile-up model assumed in the H-P relation. The internal stress of the UFG sample decreased below the expected value based on the H-P relation. It is suggested that the depletion of dislocation sources prevented the internal stress from increasing.

Original languageEnglish
Article number139585
JournalMaterials Science and Engineering A
Publication statusPublished - 2020 Sept 9


  • Accumulative roll bonding
  • Grain size
  • Pure copper
  • Single crystal
  • Stress relaxation
  • Surface area of grain boundaries

ASJC Scopus subject areas

  • Materials Science(all)
  • Condensed Matter Physics
  • Mechanics of Materials
  • Mechanical Engineering


Dive into the research topics of 'Effect of surface area of grain boundaries on stress relaxation behavior in pure copper over wide range of grain sizes'. Together they form a unique fingerprint.

Cite this