Effect of surface morphology of reference field effect transistor modified by octadecyltrimethoxysilane on ionic responses

Shigeki Kuroiwa*, Jinping Wang, Daisuke Satake, Satoshi Nomura, Tetsuya Osaka

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

5 Citations (Scopus)

Abstract

For completion of on-chip field effect transistor (FET) biosensors, it is essential to produce a reference FET instead of a reference electrode that uses an inner electrolyte. In this study, a light-addressable potentiometric sensor (LAPS) modified by a self-assembled monolayer (SAM) of octadecylsilane (ODS) was pH-insensitive (-1.5 mVpH), but it was sensitive to ionic strength as was reported in polymer-gate FETs. Our purpose was to make clear the problems of the evaluation methods of ODS-SAM FETs concerning pH and ionic responses and the effect of the surface morphology to improve a reference SAM-FET. An ODS-SAM LAPS and FET were deposited under different conditions. pH and ionic responses, roughness measured by atomic force microscope, and contact angle (CA) were greatly changed by the difference in morphology of the ODS-SAM. ODS coagulation raised the CA. It is difficult to distinguish the ODS-SAM with and without ODS coagulation only by CA, but CA is utilizable for observing the state of hydroxyl groups on the surface without ODS coagulation. ODS coagulation caused the pH response with the ODS-SAM but decreased the ionic response of the LAPS. Controlling the surface morphology of the ODS-SAM is important to suppress the pH and ionic sensitivities for an in vivo applicable reference FET.

Original languageEnglish
Pages (from-to)J67-J72
JournalJournal of the Electrochemical Society
Volume156
Issue number4
DOIs
Publication statusPublished - 2009 Mar 4

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Renewable Energy, Sustainability and the Environment
  • Surfaces, Coatings and Films
  • Electrochemistry
  • Materials Chemistry

Fingerprint

Dive into the research topics of 'Effect of surface morphology of reference field effect transistor modified by octadecyltrimethoxysilane on ionic responses'. Together they form a unique fingerprint.

Cite this