Abstract
Recently, the range of applications of surgical staplers has been extended to include laparoscopic liver resection because manipulation of a surgical stapler is very simple. Revealing the causes of stapling failure and suggesting a method to solve stapling failure are important for safe laparoscopic liver resection. Surgeons say that tissues make stapling more likely to fail if they are thick and brittle. However, the combinatorial effect of the thickness and stiffness of tissues on the success of surgical stapling for laparoscopic liver resection has not been investigated. Therefore, the objective of the present study was to investigate the effect of tissue thickness and tissue stiffness on the success rate (SR) of surgical stapling. From ex vivo stapling experimental results using pig livers, it is suggested that the effect of tissue thickness is greater than the effect of tissue stiffness on the SR of stapling. If tissue thickness is 5 mm, the SR of stapling is high regardless of the magnitude of the tissue-stiffness parameter. However, if tissue thickness is >10 mm, the SR of stapling has a relationship with nonlinear viscoelastic parameters. Therefore, the SR of stapling could be predicted from tissue thickness and nonlinear elastic parameters.
Original language | English |
---|---|
Title of host publication | 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2014 |
Publisher | Institute of Electrical and Electronics Engineers Inc. |
Pages | 353-356 |
Number of pages | 4 |
ISBN (Print) | 9781424479290 |
DOIs | |
Publication status | Published - 2014 Nov 2 |
Event | 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2014 - Chicago, United States Duration: 2014 Aug 26 → 2014 Aug 30 |
Other
Other | 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2014 |
---|---|
Country/Territory | United States |
City | Chicago |
Period | 14/8/26 → 14/8/30 |
ASJC Scopus subject areas
- Health Informatics
- Computer Science Applications
- Biomedical Engineering