Abstract
Recently (K. Kawanaka, I. Tahata, and M. Higuchi. J. Appl. Physiol. 83: 429-433, 1997), we demonstrated that glucose transport activity after repeated 10-s-long in vitro tetani in rat epitrochlearis (Epi) muscle was negatively correlated with the postcontraction muscle glycogen concentration. Therefore, we examined whether high-intensity intermittent swimming, which depletes muscle glycogen to a lower level than that observed after ten 10-s- long in vitro tetani, elicits higher glucose transport than that observed after ten 10-s-long in vitro tetani, which has been regarded as the exercise- induced maximal stimulus for glucose transport. In male rats, 2-deoxy-D- glucose transport rate in Epi muscle after eight bouts of high-intensity intermittent swimming with a weight equal to 18% of body mass (exercise duration: 20 s, rest duration between exercise bouts: 40 s) was higher than that observed after the ten 10-s-long tetani (2.25 ± 0.08 vs. 1.02 ± 0.16 μmol · ml intracellular water-1 · 20 min-1). Muscle glycogen concentration in Epi after eight bouts of high-intensity intermittent swimming was significantly lower than that observed after ten 10-s-long in vitro tetani (7.6 ± 0.5 vs. 14.8 ± 1.4 μmol glucose/g muscle). These observations show that the high-intensity intermittent swimming increases glucose transport in rat Epi to a much higher level than that induced by ten 10-s-long in vitro tetani, which has been regarded as the exercise-related maximal stimulus for glucose transport. Furthermore, this finding suggests that the lower muscle glycogen level after high-intensity intermittent swimming than after in vitro tetani may play a role, because there was a significant negative correlation between glucose transport and muscle glycogen concentration in Epi after high-intensity swimming and in vitro tetani.
Original language | English |
---|---|
Pages (from-to) | 1852-1857 |
Number of pages | 6 |
Journal | Journal of Applied Physiology |
Volume | 84 |
Issue number | 6 |
Publication status | Published - 1998 |
Externally published | Yes |
Keywords
- 2-deoxy-D-glucose transport
- Exercise-induced maximal glucose transport
- Muscle glycogen
ASJC Scopus subject areas
- Physiology
- Endocrinology
- Orthopedics and Sports Medicine
- Physical Therapy, Sports Therapy and Rehabilitation