Effects of Rotation and Magnetic Field on the Revival of a Stalled Shock in Supernova Explosions

Kotaro Fujisawa, Hirotada Okawa, Yu Yamamoto, Shoichi Yamada

Research output: Contribution to journalArticlepeer-review

15 Citations (Scopus)

Abstract

We investigate axisymmetric steady solutions of (magneto)hydrodynamics equations that approximately describe accretion flows through a standing shock wave onto a protoneutron star and discuss the effects of rotation and magnetic field on the revival of the stalled shock wave in supernova explosions. We develop a new powerful numerical method to calculate the two-dimensional steady accretion flows self-consistently. We first confirm the results of preceding papers that there is a critical luminosity of irradiating neutrinos, above which there exists no steady solution in spherical models. If a collapsing star is rotating and/or has a magnetic field, the accretion flows are no longer spherical owing to the centrifugal force and/or Lorentz force, and the critical luminosity is modified. In fact, we find that the critical luminosity is reduced by about 50%-70% for very rapid rotations; the rotation frequencies are 0.2-0.45 s -1 at the radius of r = 1000 km (equivalent to spin periods ∼0.5-0.22 ms at r = 10 km) and about 20%-50% for strong toroidal magnetic fields (the strengths of which are 1.0 × 10 12 -3.0 × 10 12 G at r = 1000 km), depending on the mass accretion rate. These results may also be interpreted as the existence of a critical specific angular momentum or critical magnetic field, above which there exists no steady solution and the standing shock wave will be revived for a given combination of mass accretion rate and neutrino luminosity.

Original languageEnglish
Article number155
JournalAstrophysical Journal
Volume872
Issue number2
DOIs
Publication statusPublished - 2019

Keywords

  • magnetohydrodynamics (MHD)
  • methods: numerical
  • shock waves
  • stars: magnetic field
  • stars: rotation
  • supernovae: general

ASJC Scopus subject areas

  • Astronomy and Astrophysics
  • Space and Planetary Science

Fingerprint

Dive into the research topics of 'Effects of Rotation and Magnetic Field on the Revival of a Stalled Shock in Supernova Explosions'. Together they form a unique fingerprint.

Cite this