TY - JOUR
T1 - Electronic structure of the local-singlet insulator NaCuO2
AU - Mizokawa, T.
AU - Fujimori, A.
AU - Namatame, H.
AU - Akeyama, K.
AU - Kosugi, N.
PY - 1994
Y1 - 1994
N2 - The insulating oxide NaCuO2 has been studied by x-ray photoemission spectroscopy and subsequent cluster-model analysis. It is found that the d8→d9L charge-transfer energy (L:ligand hole) is negative and the ground state is dominated by the d9L configuration. Using the Anderson impurity model, it is shown that strong 3d-ligand hybridization opens a band gap for a negative charge-transfer energy. This band gap corresponds to charge fluctuations mainly of the p-p type, d9L+d9L→d9+d9L2, with a considerable mixture of d character into the p states, and not of the conventional Mott-Hubbard (d-d) type nor of the charge-transfer (p-d) type. The magnitude of the gap is strongly affected by the geometrical arrangement of metal-oxygen local units, giving a natural explanation for the difference between the insulating NaCuO2 and metallic LaCuO3. The electronic structures of Fe4+ and Ni3+ oxides and their insulating versus metallic behaviors, which are expected to resemble those of the Cu3+ oxides, are also discussed. To generalize the above conclusions, a modification of the metal-insulator boundaries in the Zaanen-Sawatzky-Allen diagram is proposed to include compounds with small or negative charge-transfer energies.
AB - The insulating oxide NaCuO2 has been studied by x-ray photoemission spectroscopy and subsequent cluster-model analysis. It is found that the d8→d9L charge-transfer energy (L:ligand hole) is negative and the ground state is dominated by the d9L configuration. Using the Anderson impurity model, it is shown that strong 3d-ligand hybridization opens a band gap for a negative charge-transfer energy. This band gap corresponds to charge fluctuations mainly of the p-p type, d9L+d9L→d9+d9L2, with a considerable mixture of d character into the p states, and not of the conventional Mott-Hubbard (d-d) type nor of the charge-transfer (p-d) type. The magnitude of the gap is strongly affected by the geometrical arrangement of metal-oxygen local units, giving a natural explanation for the difference between the insulating NaCuO2 and metallic LaCuO3. The electronic structures of Fe4+ and Ni3+ oxides and their insulating versus metallic behaviors, which are expected to resemble those of the Cu3+ oxides, are also discussed. To generalize the above conclusions, a modification of the metal-insulator boundaries in the Zaanen-Sawatzky-Allen diagram is proposed to include compounds with small or negative charge-transfer energies.
UR - http://www.scopus.com/inward/record.url?scp=4243912612&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=4243912612&partnerID=8YFLogxK
U2 - 10.1103/PhysRevB.49.7193
DO - 10.1103/PhysRevB.49.7193
M3 - Article
AN - SCOPUS:4243912612
SN - 0163-1829
VL - 49
SP - 7193
EP - 7204
JO - Physical Review B
JF - Physical Review B
IS - 11
ER -