Element-splitting-invariant local-length-scale calculation in B-Spline meshes for complex geometries

Yuki Ueda, Yuto Otoguro, Kenji Takizawa*, Tayfun E. Tezduyar

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

17 Citations (Scopus)

Abstract

Variational multiscale methods and their precursors, stabilized methods, which are sometimes supplemented with discontinuity-capturing (DC) methods, have been playing their core-method role in flow computations increasingly with isogeometric discretization. The stabilization and DC parameters embedded in most of these methods play a significant role. The parameters almost always involve some local-length-scale expressions, most of the time in specific directions, such as the direction of the flow or solution gradient. Until recently, local-length-scale expressions originally intended for finite element discretization were being used also for isogeometric discretization. The direction-dependent expressions introduced in [Y. Otoguro, K. Takizawa and T. E. Tezduyar, Element length calculation in B-spline meshes for complex geometries, Comput. Mech. 65 (2020) 1085-1103, https://doi.org/10.1007/s00466-019-01809-w] target B-spline meshes for complex geometries. The key stages of deriving these expressions are mapping the direction vector from the physical element to the parent element in the parametric space, accounting for the discretization spacing along each of the parametric coordinates, and mapping what has been obtained back to the physical element. The expressions are based on a preferred parametric space and a transformation tensor that represents the relationship between the integration and preferred parametric spaces. Element splitting may be a part of the computational method in a variety of cases, including computations with T-spline discretization and immersed boundary and extended finite element methods and their isogeometric versions. We do not want the element splitting to influence the actual discretization, which is represented by the control or nodal points. Therefore, the local length scale should be invariant with respect to element splitting. In element definition, invariance of the local length scale is a crucial requirement, because, unlike the element definition choices based on implementation convenience or computational efficiency, it influences the solution. We provide a proof, in the context of B-spline meshes, for the element-splitting invariance of the local-length-scale expressions introduced in the above reference.

Original languageEnglish
Article number2139
Pages (from-to)2139-2174
Number of pages36
JournalMathematical Models and Methods in Applied Sciences
Volume30
Issue number11
DOIs
Publication statusPublished - 2020 Oct 1

Keywords

  • Directional element length
  • invariance

ASJC Scopus subject areas

  • Modelling and Simulation
  • Applied Mathematics

Fingerprint

Dive into the research topics of 'Element-splitting-invariant local-length-scale calculation in B-Spline meshes for complex geometries'. Together they form a unique fingerprint.

Cite this