TY - JOUR
T1 - Element-splitting-invariant local-length-scale calculation in B-Spline meshes for complex geometries
AU - Ueda, Yuki
AU - Otoguro, Yuto
AU - Takizawa, Kenji
AU - Tezduyar, Tayfun E.
N1 - Funding Information:
This work was supported (third author) in part by JST-CREST; Grant-in-Aid for Scientific Research (A) 18H04100 from Japan Society for the Promotion of Science; and Rice–Waseda research agreement. It was also supported in part by ARO Grant W911NF-17-1-0046, ARO STTR Grant W911NF-20-P-0011, and Top Global University Project of Waseda University (fourth author).
Publisher Copyright:
© 2020 The Author(s).
PY - 2020/10/1
Y1 - 2020/10/1
N2 - Variational multiscale methods and their precursors, stabilized methods, which are sometimes supplemented with discontinuity-capturing (DC) methods, have been playing their core-method role in flow computations increasingly with isogeometric discretization. The stabilization and DC parameters embedded in most of these methods play a significant role. The parameters almost always involve some local-length-scale expressions, most of the time in specific directions, such as the direction of the flow or solution gradient. Until recently, local-length-scale expressions originally intended for finite element discretization were being used also for isogeometric discretization. The direction-dependent expressions introduced in [Y. Otoguro, K. Takizawa and T. E. Tezduyar, Element length calculation in B-spline meshes for complex geometries, Comput. Mech. 65 (2020) 1085-1103, https://doi.org/10.1007/s00466-019-01809-w] target B-spline meshes for complex geometries. The key stages of deriving these expressions are mapping the direction vector from the physical element to the parent element in the parametric space, accounting for the discretization spacing along each of the parametric coordinates, and mapping what has been obtained back to the physical element. The expressions are based on a preferred parametric space and a transformation tensor that represents the relationship between the integration and preferred parametric spaces. Element splitting may be a part of the computational method in a variety of cases, including computations with T-spline discretization and immersed boundary and extended finite element methods and their isogeometric versions. We do not want the element splitting to influence the actual discretization, which is represented by the control or nodal points. Therefore, the local length scale should be invariant with respect to element splitting. In element definition, invariance of the local length scale is a crucial requirement, because, unlike the element definition choices based on implementation convenience or computational efficiency, it influences the solution. We provide a proof, in the context of B-spline meshes, for the element-splitting invariance of the local-length-scale expressions introduced in the above reference.
AB - Variational multiscale methods and their precursors, stabilized methods, which are sometimes supplemented with discontinuity-capturing (DC) methods, have been playing their core-method role in flow computations increasingly with isogeometric discretization. The stabilization and DC parameters embedded in most of these methods play a significant role. The parameters almost always involve some local-length-scale expressions, most of the time in specific directions, such as the direction of the flow or solution gradient. Until recently, local-length-scale expressions originally intended for finite element discretization were being used also for isogeometric discretization. The direction-dependent expressions introduced in [Y. Otoguro, K. Takizawa and T. E. Tezduyar, Element length calculation in B-spline meshes for complex geometries, Comput. Mech. 65 (2020) 1085-1103, https://doi.org/10.1007/s00466-019-01809-w] target B-spline meshes for complex geometries. The key stages of deriving these expressions are mapping the direction vector from the physical element to the parent element in the parametric space, accounting for the discretization spacing along each of the parametric coordinates, and mapping what has been obtained back to the physical element. The expressions are based on a preferred parametric space and a transformation tensor that represents the relationship between the integration and preferred parametric spaces. Element splitting may be a part of the computational method in a variety of cases, including computations with T-spline discretization and immersed boundary and extended finite element methods and their isogeometric versions. We do not want the element splitting to influence the actual discretization, which is represented by the control or nodal points. Therefore, the local length scale should be invariant with respect to element splitting. In element definition, invariance of the local length scale is a crucial requirement, because, unlike the element definition choices based on implementation convenience or computational efficiency, it influences the solution. We provide a proof, in the context of B-spline meshes, for the element-splitting invariance of the local-length-scale expressions introduced in the above reference.
KW - Directional element length
KW - invariance
UR - http://www.scopus.com/inward/record.url?scp=85089980229&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85089980229&partnerID=8YFLogxK
U2 - 10.1142/S0218202520500402
DO - 10.1142/S0218202520500402
M3 - Article
AN - SCOPUS:85089980229
SN - 0218-2025
VL - 30
SP - 2139
EP - 2174
JO - Mathematical Models and Methods in Applied Sciences
JF - Mathematical Models and Methods in Applied Sciences
IS - 11
M1 - 2139
ER -