TY - GEN
T1 - Energy-efficient high-level synthesis for HDR architectures with clock gating
AU - Akasaka, Hiroyuki
AU - Yanagisawa, Masao
AU - Togawa, Nozomu
PY - 2012/12/1
Y1 - 2012/12/1
N2 - With the miniaturization of LSIs and its increasing performance, demand for high-functional portable devices has grown significantly. At the same time, the problems for battery runtime and device overheating have occurred. On the other hand, the ratio of an interconnection delay to a gate delay has continued to increase as device feature size decreases. We have to estimate the interconnection delay and reduce energy consumption even in a high-level synthesis stage. Recently, an HDR architecture and its associated power-optimized high-level synthesis algorithm have been proposed which can effectively estimate the interconnection delays by introducing the idea of 'huddles' into an LSI chip. It utilize multiple supply voltages and achieves power-optimized LSI synthesis but does not take into account the clock gatings. In this paper, we propose a high-level synthesis algorithm based on HDR architectures utilizing clock gatings. Firstly we focus on the number of the control steps at which we can apply the clock gating to registers. Secondly, we synthesize the huddles such that each of the synthesized huddles includes registers which have similar or exactly the same clock gating timings. The experimental results show that our proposed algorithm reduces energy consumption by a maximum of 14.9% compared with the conventional algorithm.
AB - With the miniaturization of LSIs and its increasing performance, demand for high-functional portable devices has grown significantly. At the same time, the problems for battery runtime and device overheating have occurred. On the other hand, the ratio of an interconnection delay to a gate delay has continued to increase as device feature size decreases. We have to estimate the interconnection delay and reduce energy consumption even in a high-level synthesis stage. Recently, an HDR architecture and its associated power-optimized high-level synthesis algorithm have been proposed which can effectively estimate the interconnection delays by introducing the idea of 'huddles' into an LSI chip. It utilize multiple supply voltages and achieves power-optimized LSI synthesis but does not take into account the clock gatings. In this paper, we propose a high-level synthesis algorithm based on HDR architectures utilizing clock gatings. Firstly we focus on the number of the control steps at which we can apply the clock gating to registers. Secondly, we synthesize the huddles such that each of the synthesized huddles includes registers which have similar or exactly the same clock gating timings. The experimental results show that our proposed algorithm reduces energy consumption by a maximum of 14.9% compared with the conventional algorithm.
UR - http://www.scopus.com/inward/record.url?scp=84873980319&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84873980319&partnerID=8YFLogxK
U2 - 10.1109/ISOCC.2012.6407058
DO - 10.1109/ISOCC.2012.6407058
M3 - Conference contribution
AN - SCOPUS:84873980319
SN - 9781467329880
T3 - ISOCC 2012 - 2012 International SoC Design Conference
SP - 135
EP - 138
BT - ISOCC 2012 - 2012 International SoC Design Conference
T2 - 2012 International SoC Design Conference, ISOCC 2012
Y2 - 4 November 2012 through 7 November 2012
ER -