TY - JOUR
T1 - Energy spread estimation of radioactive oxygen ion beams using optical imaging
AU - Kang, Han Gyu
AU - Yamamoto, Seiichi
AU - Takyu, Sodai
AU - Nishikido, Fumihiko
AU - Mohammadi, Akram
AU - Akamatsua, Go
AU - Sato, Shinji
AU - Yamaya, Taiga
N1 - Funding Information:
This work was performed as part of the Research Project with Heavy Ions at NIRS-HIMAC. This work was partially supported by the Japan Society for the Promotion of Science (JSPS) KAKENHI Grant Nos. 18H05967 and 19KK0280.
Publisher Copyright:
© 2020 Institute of Physics and Engineering in Medicine
PY - 2020/11/25
Y1 - 2020/11/25
N2 - Radioactive ion (RI) beams combined with in-beam positron emission tomography enable accurate in situ beam range verification in heavy ion therapy. However, the energy spread of the radioactive beams generated as secondary beams is wider than that of conventional stable heavy ion beams which causes Bragg peak region and distal falloff region broadening. Therefore, the energy spread of the RI beams should be measured carefully for their quality control. Here, we proposed an optical imaging technique for the energy spread estimation of radioactive oxygen ion beams. A polymethyl methacrylate phantom (10.0 × 10.0 × 9.9 cm3) was irradiated with an 15O beam (mean energy = 247.7 MeV u−1, standard deviation = 6.8 MeV u−1) in the Heavy Ion Medical Accelerator in Chiba. Three different momentum acceptances of 1%, 2% and 4% were used to get energy spreads of 1.9 MeV u−1, 3.4 MeV u−1 and 5.5 MeV u−1, respectively. The in-beam luminescence light and offline beam Cerenkov light images were acquired with an optical system consisting of a lens and a cooled charge-coupled device camera. To estimate the energy spread of the 15O ion beams, we proposed three optical parameters: (1) distal-50% falloff length of the prompt luminescence signals; (2) full-width at half maximum of the Cerenkov light signals in the beam direction; and (3) positional difference between the peaks of the Cerenkov light and the luminescence signals. These parameters estimated the energy spread with the respective mean squared errors of 2.52 × 10−3 MeV u−1, 5.91 × 10−3 MeV u−1, and 0.182 MeV u−1. The distal-50% falloff length of the luminescence signals provided the lowest mean squared error among the optical parameters. From the findings, we concluded optical imaging using luminescence and Cerenkov light signals offers an accurate energy spread estimation of 15O ion beams. In the future, the proposed optical parameters will be used for energy spread estimation of other RI beams as well as stable ion beams.
AB - Radioactive ion (RI) beams combined with in-beam positron emission tomography enable accurate in situ beam range verification in heavy ion therapy. However, the energy spread of the radioactive beams generated as secondary beams is wider than that of conventional stable heavy ion beams which causes Bragg peak region and distal falloff region broadening. Therefore, the energy spread of the RI beams should be measured carefully for their quality control. Here, we proposed an optical imaging technique for the energy spread estimation of radioactive oxygen ion beams. A polymethyl methacrylate phantom (10.0 × 10.0 × 9.9 cm3) was irradiated with an 15O beam (mean energy = 247.7 MeV u−1, standard deviation = 6.8 MeV u−1) in the Heavy Ion Medical Accelerator in Chiba. Three different momentum acceptances of 1%, 2% and 4% were used to get energy spreads of 1.9 MeV u−1, 3.4 MeV u−1 and 5.5 MeV u−1, respectively. The in-beam luminescence light and offline beam Cerenkov light images were acquired with an optical system consisting of a lens and a cooled charge-coupled device camera. To estimate the energy spread of the 15O ion beams, we proposed three optical parameters: (1) distal-50% falloff length of the prompt luminescence signals; (2) full-width at half maximum of the Cerenkov light signals in the beam direction; and (3) positional difference between the peaks of the Cerenkov light and the luminescence signals. These parameters estimated the energy spread with the respective mean squared errors of 2.52 × 10−3 MeV u−1, 5.91 × 10−3 MeV u−1, and 0.182 MeV u−1. The distal-50% falloff length of the luminescence signals provided the lowest mean squared error among the optical parameters. From the findings, we concluded optical imaging using luminescence and Cerenkov light signals offers an accurate energy spread estimation of 15O ion beams. In the future, the proposed optical parameters will be used for energy spread estimation of other RI beams as well as stable ion beams.
KW - Energy spread
KW - Optical imaging
KW - Radioactive ion beam
UR - http://www.scopus.com/inward/record.url?scp=85098661470&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85098661470&partnerID=8YFLogxK
U2 - 10.1088/1361-6560/abc304
DO - 10.1088/1361-6560/abc304
M3 - Article
C2 - 33080581
AN - SCOPUS:85098661470
SN - 0031-9155
VL - 65
JO - Physics in Medicine and Biology
JF - Physics in Medicine and Biology
IS - 23
M1 - 235002
ER -