TY - JOUR
T1 - Environmental modulation of C-terminus dynamic structure in bacteriorhodopsin
AU - Marque, Jeffrey
AU - Kinosita, Kazuhiko
AU - Govindjee, Rajni
AU - Ikegami, Akira
AU - Ebrey, T. G.
AU - Otomo, Jun
PY - 1986
Y1 - 1986
N2 - We used steady-state and time-resolved (pulsed) fluorescence spectroscopies to study the dynamic structure of the COOH terminus in bacteriorhodopsin. The extrinsic fluorophore 8-aminonaphthalene-1,3,6-trisulfonic acid was attached to the protein, in purple membrane sheets, with a water-soluble carbodiimide; about 50% of the dye molecules were found to be attached to the COOH terminus. Signals from samples treated with papain were subtracted from non-papain-treated sample signals to give information about the COOH-terminus dynamics. Dye molecules on the COOH terminus fluoresce more strongly than dye molecules bound elsewhere on the membrane. This result, combined with our calculations showing that retinal is an energy acceptor in our system, suggests that the C-terminus spends most of its time away from the membrane surface. We systematically studied the effects of temperature, ionic strength, and pH, fitting the time-resolved anisotropy to r(t) = r∞ + (r0 - r∞)e-t/φ; the following picture emerged: In the pH range 5.6-10.9, raising the pH has the effect of increasing the fluorescence intensity and decreasing r∞. We interpret this result to mean that the time-averaged position of the COOH terminus becomes farther from retinal as the pH is raised and that the range of Brownian motions of the C-terminus increases along with the pH. At pH 6.6, adding NaCl up to a concentration of 10 mM had qualitatively the same effects as raising the pH. Over the temperature range 10-50°C, the time constant for anisotropy decay scales closely with the viscosity of water, a result consistent with Brownian motions of the COOH terminus in bulk water. We invariably found that r0 > 2r∞. All of our results are consistent with the conclusion of Wallace and Henderson [Wallace, B. A., & Henderson, R. (1982) Biophys. J. 39, 233] that the COOH terminus of bacteriorhodopsin is free to assume many positions.
AB - We used steady-state and time-resolved (pulsed) fluorescence spectroscopies to study the dynamic structure of the COOH terminus in bacteriorhodopsin. The extrinsic fluorophore 8-aminonaphthalene-1,3,6-trisulfonic acid was attached to the protein, in purple membrane sheets, with a water-soluble carbodiimide; about 50% of the dye molecules were found to be attached to the COOH terminus. Signals from samples treated with papain were subtracted from non-papain-treated sample signals to give information about the COOH-terminus dynamics. Dye molecules on the COOH terminus fluoresce more strongly than dye molecules bound elsewhere on the membrane. This result, combined with our calculations showing that retinal is an energy acceptor in our system, suggests that the C-terminus spends most of its time away from the membrane surface. We systematically studied the effects of temperature, ionic strength, and pH, fitting the time-resolved anisotropy to r(t) = r∞ + (r0 - r∞)e-t/φ; the following picture emerged: In the pH range 5.6-10.9, raising the pH has the effect of increasing the fluorescence intensity and decreasing r∞. We interpret this result to mean that the time-averaged position of the COOH terminus becomes farther from retinal as the pH is raised and that the range of Brownian motions of the C-terminus increases along with the pH. At pH 6.6, adding NaCl up to a concentration of 10 mM had qualitatively the same effects as raising the pH. Over the temperature range 10-50°C, the time constant for anisotropy decay scales closely with the viscosity of water, a result consistent with Brownian motions of the COOH terminus in bulk water. We invariably found that r0 > 2r∞. All of our results are consistent with the conclusion of Wallace and Henderson [Wallace, B. A., & Henderson, R. (1982) Biophys. J. 39, 233] that the COOH terminus of bacteriorhodopsin is free to assume many positions.
UR - http://www.scopus.com/inward/record.url?scp=0000856280&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0000856280&partnerID=8YFLogxK
M3 - Article
AN - SCOPUS:0000856280
SN - 0006-2960
VL - 25
SP - 5555
EP - 5559
JO - Biochemistry
JF - Biochemistry
IS - 19
ER -