Abstract
This paper introduces a new open source platform for end-to-end speech processing named ESPnet. ESPnet mainly focuses on end-to-end automatic speech recognition (ASR), and adopts widely-used dynamic neural network toolkits, Chainer and PyTorch, as a main deep learning engine. ESPnet also follows the Kaldi ASR toolkit style for data processing, feature extraction/format, and recipes to provide a complete setup for speech recognition and other speech processing experiments. This paper explains a major architecture of this software platform, several important functionalities, which differentiate ESPnet from other open source ASR toolkits, and experimental results with major ASR benchmarks.
Original language | English |
---|---|
Pages (from-to) | 2207-2211 |
Number of pages | 5 |
Journal | Proceedings of the Annual Conference of the International Speech Communication Association, INTERSPEECH |
Volume | 2018-September |
DOIs | |
Publication status | Published - 2018 |
Externally published | Yes |
Event | 19th Annual Conference of the International Speech Communication, INTERSPEECH 2018 - Hyderabad, India Duration: 2018 Sept 2 → 2018 Sept 6 |
Keywords
- Dynamical neural network
- End-to-end
- Kaldi
- Open source software
- Speech recognition
ASJC Scopus subject areas
- Language and Linguistics
- Human-Computer Interaction
- Signal Processing
- Software
- Modelling and Simulation