Evaluation of Economic Performance of Co2 Separation Process Using Mixed Matrix Membrane

Kakeru Fujita, Ryousuke Akimoto, Yasuhiko Suzuki, Yuki Ogasawara, Masaru Nakaiwa, Keigo Matsuda

Research output: Chapter in Book/Report/Conference proceedingChapter

Abstract

A multi-stage CO2 capture process using Mixed Matrix Membrane (MMM) could separate molecules with similar molecular diameter such as CO2 and N2 by dissolution and diffusion. The required energy and the membrane area were investigated based on the membrane performance such as CO2 permeance and CO2/N2 selectivity. In this multi-stage CO2 capture process, the feed gas fed into the first and second membranes. The gas permeated through the second membrane was recycled to Feed. The permeate gas from the first membrane was fed to the adsorption column to separate H2O. The CO2-rich dry gas was liquefied by using a compressor and a condenser. The residual gas was separated using a membrane, and the permeate gas was recycled to the dry gas. The flue gas assumed from a coal-fired power plant containing 11.6 mol% CO2. When the CO2 permeance of 1000 GPU and CO2/N2 selectivity of 50 were used for the first and second membranes of the multi-stage CO2 capture process, the required energy was 139 MW and the membrane area was 3.6 × 106 m2, respectively. From these results, the operation, construction, and membrane skid costs were calculated. The CO2 capture cost per ton of CO2 was found to be $38/ton-CO2. In addition, the membrane area of the second was large, and the membrane area could be reduced by using a membrane with high CO2 permeance and low CO2/N2 selectivity. Therefore, a membrane with CO2 permeance of 1000 GPU and CO2/N2 selectivity of 50 was used in the first. A membrane with CO2 permeance of 3000 GPU and CO2/N2 selectivity of 30 was used in the second. As a result, it was clarified that the required energy was 141 MW, and the membrane area was 1.25 × 106 m2. The CO2 capture cost was $29/ton-CO2.

Original languageEnglish
Title of host publicationComputer Aided Chemical Engineering
PublisherElsevier B.V.
Pages265-270
Number of pages6
DOIs
Publication statusPublished - 2022 Jan
Externally publishedYes

Publication series

NameComputer Aided Chemical Engineering
Volume49
ISSN (Print)1570-7946

Keywords

  • Carbon dioxide
  • Membrane separation
  • Process design

ASJC Scopus subject areas

  • Chemical Engineering(all)
  • Computer Science Applications

Fingerprint

Dive into the research topics of 'Evaluation of Economic Performance of Co2 Separation Process Using Mixed Matrix Membrane'. Together they form a unique fingerprint.

Cite this