Abstract
The experimental performance of a new three-fluid fin–tube contactor using a novel ionic liquid desiccant solution is investigated and compared with those of an adiabatic packed bed contactor with LiCl solution for liquid desiccant air conditioning system applications. Owing to the compatibility of the ionic liquid solution with aluminum, a fin–tube contactor is manufactured to exploit internal cooling from a third fluid. The results indicate the superior dehumidification performance of the fin–tube contactor, which yielded an outlet air humidity ratio of 10.5 gw·kgda-1 at a solution mass flux of 3.06 kg·m−2·s−1, as compared to a similar humidity ratio at a solution mass flux of 4.98 kg·m−2·s−1 achieved by the packed bed contactor. In terms of cooling performance, the outlet air temperature of the fin–tube contactor is 21.9 °C, which is lower than that of the packed bed contactor even at its highest solution mass flux. This indicates that the cooling performance of the fin–tube contactor has minimal dependence on the solution mass flux in achieving cooling effect, owing to the cooling medium flowing inside the tubes. Relatively lower solution pumping power than that of the packed bed contactor can be expected from the fin–tube contactor, in addition to the ability to achieve comfortable and hygienic indoor air at a cooling medium temperature of 17 °C or higher, the ionic liquid desiccant and three-fluid fin–tube contactor pair for liquid desiccant air conditioning system is elevated a step higher as an alternative to vapor compression air conditioning system.
Original language | English |
---|---|
Article number | 118343 |
Journal | Applied Thermal Engineering |
Volume | 210 |
DOIs | |
Publication status | Published - 2022 Jun 25 |
Keywords
- Energy conservation
- Experimental performance
- Ionic liquid
- Performance comparison
- Three-fluid desiccant contactor
ASJC Scopus subject areas
- Mechanical Engineering
- Energy Engineering and Power Technology
- Fluid Flow and Transfer Processes
- Industrial and Manufacturing Engineering