Extension and performance/accuracy formulation for optimal GeAr-based approximate adder designs

    Research output: Contribution to journalArticlepeer-review

    1 Citation (Scopus)

    Abstract

    Approximate computing is a promising solution for future energy-efficient designs because it can provide great improvements in performance, area and/or energy consumption over traditional exact-computing designs for non-critical error-tolerant applications. However, the most challenging issue in designing approximate circuits is how to guarantee the pre-specified computation accuracy while achieving energy reduction and performance improvement. To address this problem, this paper starts from the state-of-the-art general approximate adder model (GeAr) and extends it for more possible approximate design candidates by relaxing the design restrictions. And then a maximum-error-distance-based performance/accuracy formulation, which can be used to select the performance/energy-accuracy optimal design from the extended design space, is proposed. Our evaluation results show the effectiveness of the proposed method in terms of area overhead, performance, energy consumption, and computation accuracy.

    Original languageEnglish
    Pages (from-to)1014-1024
    Number of pages11
    JournalIEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences
    VolumeE101A
    Issue number7
    DOIs
    Publication statusPublished - 2018 Jul 1

    Keywords

    • Adder
    • Approximate computing
    • Energy-efficient
    • GeAr

    ASJC Scopus subject areas

    • Signal Processing
    • Computer Graphics and Computer-Aided Design
    • Electrical and Electronic Engineering
    • Applied Mathematics

    Fingerprint

    Dive into the research topics of 'Extension and performance/accuracy formulation for optimal GeAr-based approximate adder designs'. Together they form a unique fingerprint.

    Cite this