TY - GEN
T1 - Feedback-controlled random test generation
AU - Yatoh, Kohsuke
AU - Sakamoto, Kazunori
AU - Ishikawa, Fuyuki
AU - Honiden, Shinichi
PY - 2015/7/13
Y1 - 2015/7/13
N2 - Feedback-directed random test generation is a widely used technique to generate random method sequences. It leverages feedback to guide generation. However, the validity of feedback guidance has not been challenged yet. In this paper, we investigate the characteristics of feedback-directed random test generation and propose a method that exploits the obtained knowledge that excessive feedback limits the diversity of tests. First, we show that the feedback loop of feedback-directed generation algorithm is a positive feedback loop and amplifies the bias that emerges in the candidate value pool. This over-directs the generation and limits the diversity of generated tests. Thus, limiting the amount of feedback can improve diversity and effectiveness of generated tests. Second, we propose a method named feedbackcontrolled random test generation, which aggressively controls the feedback in order to promote diversity of generated tests. Experiments on eight different, real-world application libraries indicate that our method increases branch coverage by 78% to 204% over the original feedback-directed algorithm on large-scale utility libraries. Copyright is held by the owner/author(s).
AB - Feedback-directed random test generation is a widely used technique to generate random method sequences. It leverages feedback to guide generation. However, the validity of feedback guidance has not been challenged yet. In this paper, we investigate the characteristics of feedback-directed random test generation and propose a method that exploits the obtained knowledge that excessive feedback limits the diversity of tests. First, we show that the feedback loop of feedback-directed generation algorithm is a positive feedback loop and amplifies the bias that emerges in the candidate value pool. This over-directs the generation and limits the diversity of generated tests. Thus, limiting the amount of feedback can improve diversity and effectiveness of generated tests. Second, we propose a method named feedbackcontrolled random test generation, which aggressively controls the feedback in order to promote diversity of generated tests. Experiments on eight different, real-world application libraries indicate that our method increases branch coverage by 78% to 204% over the original feedback-directed algorithm on large-scale utility libraries. Copyright is held by the owner/author(s).
KW - Diversity
KW - Random testing
KW - Test generation
UR - http://www.scopus.com/inward/record.url?scp=84975764104&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84975764104&partnerID=8YFLogxK
U2 - 10.1145/2771783.2771805
DO - 10.1145/2771783.2771805
M3 - Conference contribution
AN - SCOPUS:84975764104
T3 - 2015 International Symposium on Software Testing and Analysis, ISSTA 2015 - Proceedings
SP - 316
EP - 326
BT - 2015 International Symposium on Software Testing and Analysis, ISSTA 2015 - Proceedings
PB - Association for Computing Machinery, Inc
T2 - 24th International Symposium on Software Testing and Analysis, ISSTA 2015
Y2 - 13 July 2015 through 17 July 2015
ER -