TY - JOUR
T1 - First-order phase transition and anomalous hysteresis of Bose gases in optical lattices
AU - Yamamoto, Daisuke
AU - Ozaki, Takeshi
AU - Sá De Melo, Carlos A R
AU - Danshita, Ippei
PY - 2013/9/20
Y1 - 2013/9/20
N2 - We study the first-order quantum phase transitions of Bose gases in optical lattices. A special emphasis is placed on an anomalous hysteresis behavior, in which the phase transition occurs in a unidirectional way and a hysteresis loop does not form. We first revisit the hardcore Bose-Hubbard model with dipole-dipole interactions on a triangular lattice to analyze accurately the ground-state phase diagram and the hysteresis using the cluster mean-field theory combined with cluster-size scaling. Details of the anomalous hysteresis are presented. We next consider the two-component and spin-1 Bose-Hubbard models on a hypercubic lattice and show that the anomalous hysteresis can emerge in these systems as well. In particular, for the former model, we discuss the experimental feasibility of the first-order transitions and the associated hysteresis. We also explain an underlying mechanism of the anomalous hysteresis by means of the Ginzburg-Landau theory. From the given cases, we conclude that the anomalous hysteresis is a ubiquitous phenomenon of systems with a phase region of lobe shape that is surrounded by the first-order boundary.
AB - We study the first-order quantum phase transitions of Bose gases in optical lattices. A special emphasis is placed on an anomalous hysteresis behavior, in which the phase transition occurs in a unidirectional way and a hysteresis loop does not form. We first revisit the hardcore Bose-Hubbard model with dipole-dipole interactions on a triangular lattice to analyze accurately the ground-state phase diagram and the hysteresis using the cluster mean-field theory combined with cluster-size scaling. Details of the anomalous hysteresis are presented. We next consider the two-component and spin-1 Bose-Hubbard models on a hypercubic lattice and show that the anomalous hysteresis can emerge in these systems as well. In particular, for the former model, we discuss the experimental feasibility of the first-order transitions and the associated hysteresis. We also explain an underlying mechanism of the anomalous hysteresis by means of the Ginzburg-Landau theory. From the given cases, we conclude that the anomalous hysteresis is a ubiquitous phenomenon of systems with a phase region of lobe shape that is surrounded by the first-order boundary.
UR - http://www.scopus.com/inward/record.url?scp=84884878875&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84884878875&partnerID=8YFLogxK
U2 - 10.1103/PhysRevA.88.033624
DO - 10.1103/PhysRevA.88.033624
M3 - Article
AN - SCOPUS:84884878875
SN - 1050-2947
VL - 88
JO - Physical Review A - Atomic, Molecular, and Optical Physics
JF - Physical Review A - Atomic, Molecular, and Optical Physics
IS - 3
M1 - 033624
ER -