TY - JOUR
T1 - First-principles XANES simulations of spinel zinc ferrite with a disordered cation distribution
AU - Nakashima, Seisuke
AU - Fujita, Koji
AU - Tanaka, Katsuhisa
AU - Hirao, Kazuyuki
AU - Yamamoto, Tomoyuki
AU - Tanaka, Isao
N1 - Copyright:
Copyright 2007 Elsevier B.V., All rights reserved.
PY - 2007/5/25
Y1 - 2007/5/25
N2 - Theoretical calculations of Zn K and Fe K x-ray absorption near-edge structures (XANES) using a first-principles method have been performed to evaluate the degree of cation disordering in spinel zinc ferrite (Zn Fe2 O4) thin film prepared by a sputtering method, Zn Fe2 O4 thin films annealed at elevated temperatures, and Zn Fe2 O4 bulk specimen prepared by a solid-state reaction. Using the full-potential linearized augmented plane-wave + local orbitals method, a theoretical spectrum is generated for the tetrahedral and octahedral environments for each of the two cations. The experimental XANES spectrum of the thin film annealed at 800°C as well as that of bulk specimen is successfully reproduced by using either the theoretical spectrum for Zn2+ on the tetrahedral site (A site) or that for Fe3+ on the octahedral site (B site), which is indicative of the normal spinel structure. For the as-deposited film, on the other hand, excellent agreement between theoretical and experimental spectra is obtained by considering the presence of either ion in both the A and B sites. The degree of cation disordering, x, defined as [Zn 1-x 2+ Fex 3+] A [Znx 2+ Fe 2-x 3+] B O4, is estimated to be approximately 0.6 in the as-deposited film, which is consistent with the analysis of the extended x-ray absorption fine structure on the Zn K edge. Curious magnetic properties as we previously observed for the as-deposited thin film-i.e., ferrimagnetic behaviors accompanied by large magnetization at room temperature and cluster spin-glass-like behavior-are discussed in connection with disordering of Zn2+ and Fe3+ ions in the spinel-type structure.
AB - Theoretical calculations of Zn K and Fe K x-ray absorption near-edge structures (XANES) using a first-principles method have been performed to evaluate the degree of cation disordering in spinel zinc ferrite (Zn Fe2 O4) thin film prepared by a sputtering method, Zn Fe2 O4 thin films annealed at elevated temperatures, and Zn Fe2 O4 bulk specimen prepared by a solid-state reaction. Using the full-potential linearized augmented plane-wave + local orbitals method, a theoretical spectrum is generated for the tetrahedral and octahedral environments for each of the two cations. The experimental XANES spectrum of the thin film annealed at 800°C as well as that of bulk specimen is successfully reproduced by using either the theoretical spectrum for Zn2+ on the tetrahedral site (A site) or that for Fe3+ on the octahedral site (B site), which is indicative of the normal spinel structure. For the as-deposited film, on the other hand, excellent agreement between theoretical and experimental spectra is obtained by considering the presence of either ion in both the A and B sites. The degree of cation disordering, x, defined as [Zn 1-x 2+ Fex 3+] A [Znx 2+ Fe 2-x 3+] B O4, is estimated to be approximately 0.6 in the as-deposited film, which is consistent with the analysis of the extended x-ray absorption fine structure on the Zn K edge. Curious magnetic properties as we previously observed for the as-deposited thin film-i.e., ferrimagnetic behaviors accompanied by large magnetization at room temperature and cluster spin-glass-like behavior-are discussed in connection with disordering of Zn2+ and Fe3+ ions in the spinel-type structure.
UR - http://www.scopus.com/inward/record.url?scp=34347231970&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=34347231970&partnerID=8YFLogxK
U2 - 10.1103/PhysRevB.75.174443
DO - 10.1103/PhysRevB.75.174443
M3 - Article
AN - SCOPUS:34347231970
SN - 0163-1829
VL - 75
JO - Physical Review B-Condensed Matter
JF - Physical Review B-Condensed Matter
IS - 17
M1 - 174443
ER -