Abstract
We study the five-dimensional Einstein-Yang-Mills system with a cosmological constant. Assuming a spherically symmetric spacetime, we find a new analytic black hole solution, which approaches asymptotically “quasi-Minkowski”, “quasi–anti-de Sitter”, or “quasi–de Sitter” spacetime depending on the sign of the cosmological constant. Since there is no singularity except for the origin that is covered by an event horizon, we regard it as a localized object. This solution corresponds to a magnetically charged black hole. We also present a singularity-free particlelike solution and a nontrivial black hole solution numerically. Those solutions correspond to the Bartnik-McKinnon solution and a colored black hole with a cosmological constant in four dimensions. We analyze their asymptotic behavior, spacetime structures, and thermodynamical properties. We show that there is a set of stable solutions if the cosmological constant is negative.
Original language | English |
---|---|
Journal | Physical Review D - Particles, Fields, Gravitation and Cosmology |
Volume | 67 |
Issue number | 10 |
DOIs | |
Publication status | Published - 2003 |
Externally published | Yes |
ASJC Scopus subject areas
- Nuclear and High Energy Physics
- Physics and Astronomy (miscellaneous)