Fog computing-enabled secure demand response for internet of energy against collusion attacks using consensus and ACE

Gaolei Li, Jun Wu*, Jianhua Li, Zhitao Guan, Longhua Guo

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

38 Citations (Scopus)

Abstract

Internet of Energy (IoE) is a novel decentralized energy supplying paradigm, which integrated highly scalable and distributed energy resources to satisfy the various demands in future green applications. The existing works focus on the monitor and control of the state of networked energy storage devices. However, optimizing the security of demand response (DR) management with given energy states under IoE circumstance is rarely studied. Due to the connection to the Internet, the DR management in IoE faces a number of unique cyber-physical security challenges. First, as distributed energy resources have a large number of stakeholders and any illegal skip-level energy access may cause disastrous results, it requires fog computing paradigm to enforce a more secure DR management. Second, in the localized energy networks of IoE, a corrupt DR participator can maliciously read and write DR strategies by using collusion attacks (e.g., reputation-based cheating and unfair competing). To address these issues, we propose a fog computing-enabled secure demand response (FSDR) scheme for IoE against collusion attacks using consensus and access control encryption. In FSDR, the fog node was reconstructed as a sanitizer to randomly transfer encrypted energy states and DR strategies with homomorphic operations. Moreover, a simulated annealing-based consensus algorithm was presented to examine the validity of the energy states and DR strategies. In addition, we establish the mathematical models of collusion attacks and attack defense approaches. The performance evaluation validated its efficiency.

Original languageEnglish
Pages (from-to)11278-11288
Number of pages11
JournalIEEE Access
Volume6
DOIs
Publication statusPublished - 2018 Feb 5
Externally publishedYes

Keywords

  • Access control encryption (ACE)
  • Consensus
  • Demand response (DR)
  • Fog computing
  • Internet of Energy (IoE)

ASJC Scopus subject areas

  • General Computer Science
  • General Materials Science
  • General Engineering
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Fog computing-enabled secure demand response for internet of energy against collusion attacks using consensus and ACE'. Together they form a unique fingerprint.

Cite this