TY - JOUR
T1 - Framework to describe constructs of academic emotions using ontological descriptions of statistical models
AU - Muramatsu, Keiichi
AU - Tanaka, Eiichirou
AU - Watanuki, Keiichi
AU - Matsui, Tatsunori
N1 - Publisher Copyright:
© 2016, The Author(s).
PY - 2016/12/1
Y1 - 2016/12/1
N2 - Many studies have been conducted during the last two decades examining learner reactions within e-learning environments. In an effort to assist learners in their scholastic activities, these studies have attempted to understand a learner’s mental states by analyzing participants’ facial images, eye movements, and other physiological indices and data. To add to this growing body of research, we have been developing the intelligent mentoring system (IMS), which performs automatic mentoring by using an intelligent tutoring system (ITS) to scaffold learning activities and an ontology to provide a specification of learner’s models. To identify learner’s mental states, the ontology operates on the basis of the theoretical and data-driven knowledge of emotions. In this study, we use statistical models to examine constructs of emotions evaluated in previous psychological studies and then produce a construct of academic boredom. In concrete terms, we develop ontological descriptions of academic boredom that are represented with statistical models. To evaluate the validity and utility of the descriptions, we conduct an experiment to obtain subjective responses regarding learners’ academic emotions in their university course and describe them as instances on the basis of the ontological descriptions.
AB - Many studies have been conducted during the last two decades examining learner reactions within e-learning environments. In an effort to assist learners in their scholastic activities, these studies have attempted to understand a learner’s mental states by analyzing participants’ facial images, eye movements, and other physiological indices and data. To add to this growing body of research, we have been developing the intelligent mentoring system (IMS), which performs automatic mentoring by using an intelligent tutoring system (ITS) to scaffold learning activities and an ontology to provide a specification of learner’s models. To identify learner’s mental states, the ontology operates on the basis of the theoretical and data-driven knowledge of emotions. In this study, we use statistical models to examine constructs of emotions evaluated in previous psychological studies and then produce a construct of academic boredom. In concrete terms, we develop ontological descriptions of academic boredom that are represented with statistical models. To evaluate the validity and utility of the descriptions, we conduct an experiment to obtain subjective responses regarding learners’ academic emotions in their university course and describe them as instances on the basis of the ontological descriptions.
KW - Academic emotions
KW - Boredom
KW - Construct
KW - Ontology
UR - http://www.scopus.com/inward/record.url?scp=84986317060&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84986317060&partnerID=8YFLogxK
U2 - 10.1186/s41039-016-0029-1
DO - 10.1186/s41039-016-0029-1
M3 - Article
AN - SCOPUS:84986317060
SN - 1793-7078
VL - 11
JO - Research and Practice in Technology Enhanced Learning
JF - Research and Practice in Technology Enhanced Learning
IS - 1
M1 - 5
ER -