Functional interaction of regulatory factors with the Pgc-1α promoter in response to exercise by in vivo imaging

Takayuki Akimoto, Ping Li, Zhen Yan*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

53 Citations (Scopus)


Real-time optical bioluminescence imaging is a powerful tool for studies of gene regulation in living animals. To elucidate exercise-induced signaling/transcriptional control of the peroxisome proliferator-activated receptor-γ coactivator-1α (Pgc-1α) gene in skeletal muscle, we combined this technology with electric pulse-mediated gene transfer to cotransfect the Pgc-1α reporter gene with plasmid DNA encoding mutant/deletion forms of putative regulatory factors and, thereby, assess the responsiveness of the promoter to skeletal muscle contraction. We show that each of the myocyte enhancer factor 2 sites on the Pgc-1α promoter is required for contractile activity-induced Pgc-1α transcription. The responsiveness of the Pgc-1α promoter to contractile activity could be completely blocked by overexpression of the dominant-negative form of activating transcription factor 2 (ATF2), the signaling-resistant form of histone deacetylase (HDAC) 5 (HDAC5), or protein kinase D (PKD), but not by HDAC4. These findings provide in vivo evidence for functional interactions between PKD/HDAC5 and ATF2 regulatory factors and the Pgc-1α gene in adult skeletal muscle.

Original languageEnglish
Pages (from-to)C288-C292
JournalAmerican Journal of Physiology - Cell Physiology
Issue number1
Publication statusPublished - 2008 Jul
Externally publishedYes


  • Electric pulse-mediated gene transfer
  • Optical biolunminescence imaging
  • Reporter gene
  • Signal transduction
  • Transcriptional control

ASJC Scopus subject areas

  • Physiology
  • Cell Biology


Dive into the research topics of 'Functional interaction of regulatory factors with the Pgc-1α promoter in response to exercise by in vivo imaging'. Together they form a unique fingerprint.

Cite this