Further axiomatizations of Egghe's g-index

Tsuyoshi Adachi, Takumi Kongo*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

2 Citations (Scopus)


We provide three axiomatic characterizations of Egghe's g-index, which measures a researcher's scientific output based on the number of papers the researcher has published and the number of citations of each of the researcher's papers. We formulate six new axioms for indexes, namely, tail independence (TA), square monotonicity (SM), the cap condition (CC), strong square monotonicity (SSM), increasing marginal citations (IMC), and increasing marginal citations+ (IMC+). Along with the two well-known axioms T1 and T2 (Woeginger, 2008a), the g-index is characterized by (i) T1, T2, TA, SM, and CC, (ii) T1, T2, TA, SSM, and IMC, and (iii) T1, TA, SM, and IMC+. Two out of three characterizations are obtained by adding axioms to our new characterization of the class of indexes satisfying T1, T2, and TA, which are defined as generalizations of the g-index. Thus, the remaining four axioms in our first and second characterizations-SM, CC, SSM, and IMC-distinguish the original g-index from other related indexes in the class. Furthermore, the independence of our axioms and that of Woeginger's study is shown.

Original languageEnglish
Pages (from-to)839-844
Number of pages6
JournalJournal of Informetrics
Issue number4
Publication statusPublished - 2015 Oct 1
Externally publishedYes


  • Axiomatization
  • Citation
  • Egghe's g-index
  • Increasing marginal citation
  • Square monotonicity
  • Tail independence

ASJC Scopus subject areas

  • Computer Science Applications
  • Library and Information Sciences


Dive into the research topics of 'Further axiomatizations of Egghe's g-index'. Together they form a unique fingerprint.

Cite this