TY - JOUR
T1 - Gauge-ready formulation of cosmological perturbations in scalar-vector-tensor theories
AU - Heisenberg, Lavinia
AU - Kase, Ryotaro
AU - Tsujikawa, Shinji
N1 - Funding Information:
We are grateful to Antonio De Felice and Atsushi Naruko for useful discussions. L. H. acknowledges financial support from Dr. Max Rössler, the Walter Haefner Foundation and the ETH Zurich Foundation. R. K. is supported by the Grant-in-Aid for Young Scientists B of the JSPS Grant No. 17K14297. S. T. is supported by the Grant-in-Aid for Scientific Research Fund of the JSPS Grant No. 16K05359 and MEXT KAKENHI Grant-in-Aid for Scientific Research on Innovative Areas “Cosmic Acceleration” (Grant No. 15H05890).
Publisher Copyright:
© 2018 American Physical Society.
PY - 2018/12/15
Y1 - 2018/12/15
N2 - In scalar-vector-tensor (SVT) theories with parity invariance, we perform a gauge-ready formulation of cosmological perturbations on the flat Friedmann-Lemaître-Robertson-Walker background by taking into account a matter perfect fluid. We derive the second-order action of scalar perturbations and resulting linear perturbation equations of motion without fixing any gauge conditions. Depending on physical problems at hand, most convenient gauges can be chosen to study the development of inhomogeneities in the presence of scalar and vector fields coupled to gravity. This versatile framework, which encompasses Horndeski and generalized Proca theories as special cases, is applicable to a wide variety of cosmological phenomena including nonsingular cosmology, inflation, and dark energy. By deriving conditions for the absence of ghost and Laplacian instabilities in several different gauges, we show that, unlike Horndeski theories, it is possible to evade no-go arguments for the absence of stable nonsingular bouncing/genesis solutions in both generalized Proca and SVT theories. We also apply our framework to the case in which scalar and vector fields are responsible for dark energy and find that the separation of observables relevant to the evolution of matter perturbations into tensor, vector, and scalar sectors is transparent in the unitary gauge. Unlike the flat gauge chosen in the literature, this result is convenient to confront SVT theories with observations associated with the cosmic growth history.
AB - In scalar-vector-tensor (SVT) theories with parity invariance, we perform a gauge-ready formulation of cosmological perturbations on the flat Friedmann-Lemaître-Robertson-Walker background by taking into account a matter perfect fluid. We derive the second-order action of scalar perturbations and resulting linear perturbation equations of motion without fixing any gauge conditions. Depending on physical problems at hand, most convenient gauges can be chosen to study the development of inhomogeneities in the presence of scalar and vector fields coupled to gravity. This versatile framework, which encompasses Horndeski and generalized Proca theories as special cases, is applicable to a wide variety of cosmological phenomena including nonsingular cosmology, inflation, and dark energy. By deriving conditions for the absence of ghost and Laplacian instabilities in several different gauges, we show that, unlike Horndeski theories, it is possible to evade no-go arguments for the absence of stable nonsingular bouncing/genesis solutions in both generalized Proca and SVT theories. We also apply our framework to the case in which scalar and vector fields are responsible for dark energy and find that the separation of observables relevant to the evolution of matter perturbations into tensor, vector, and scalar sectors is transparent in the unitary gauge. Unlike the flat gauge chosen in the literature, this result is convenient to confront SVT theories with observations associated with the cosmic growth history.
UR - http://www.scopus.com/inward/record.url?scp=85059408170&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85059408170&partnerID=8YFLogxK
U2 - 10.1103/PhysRevD.98.123504
DO - 10.1103/PhysRevD.98.123504
M3 - Article
AN - SCOPUS:85059408170
SN - 2470-0010
VL - 98
JO - Physical Review D
JF - Physical Review D
IS - 12
M1 - 123504
ER -