Global existence and asymptotic behavior of solutions for quasi-linear dissipative plate equation

Yongqin Liu*, Shuichi Kawashima

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

32 Citations (Scopus)


In this paper we focus on the initial value problem for quasi-linear dissipative plate equation in multi-dimensional space (n ≥ 2). This equation verifies the decay property of the regularity-loss type, which causes the difficulty in deriving the global a priori estimates of solutions. We overcome this difficulty by employing a time-weighted L2 energy method which makes use of the integrability of ||(δ2xu t3xu)(t)||L∞. This L∞ norm can be controlled by showing the optimal L2 decay estimates for lower-order derivatives of solutions. Thus we obtain the desired a priori estimate which enables us to prove the global existence and asymptotic decay of solutions under smallness and enough regularity assumptions on the initial data. Moreover, we show that the solution can be approximated by a simple-looking function, which is given explicitly in terms of the fundamental solution of a fourth-order linear parabolic equation.

Original languageEnglish
Pages (from-to)1113-1139
Number of pages27
JournalDiscrete and Continuous Dynamical Systems
Issue number3
Publication statusPublished - 2011 Mar
Externally publishedYes


  • Asymptotic behavior
  • Decay estimates
  • Global existence
  • Quasi-linear dissipative plate equation
  • Timeweighted energy method

ASJC Scopus subject areas

  • Analysis
  • Discrete Mathematics and Combinatorics
  • Applied Mathematics


Dive into the research topics of 'Global existence and asymptotic behavior of solutions for quasi-linear dissipative plate equation'. Together they form a unique fingerprint.

Cite this