Global solutions to the equation of viscoelasticity with fading memory

Shuichi Kawashima*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

13 Citations (Scopus)


The initial-history value problem for the one-dimensional equation of viscoelasticity with fading memory is studied in a situation that allows the kernel function to have integrable singularities in the first order derivative. It is proved that if the data are smooth and small, then a unique solution exists globally in time and converges to the equilibrium as time goes to infinity, provided that the kernel is strongly positive definite. This is an improvement on the previous result by W. J. Hrusa and J. A. Nohel (J. Differential Equations59, 1985, 388-412). Our proof is based on an energy method which makes use of properties of strongly positive definite kernels.

Original languageEnglish
Pages (from-to)388-420
Number of pages33
JournalJournal of Differential Equations
Issue number2
Publication statusPublished - 1993 Feb
Externally publishedYes

ASJC Scopus subject areas

  • Analysis
  • Applied Mathematics


Dive into the research topics of 'Global solutions to the equation of viscoelasticity with fading memory'. Together they form a unique fingerprint.

Cite this