Green tea epigallocatechin gallate exhibits anticancer effect in human pancreatic carcinoma cells via the inhibition of both focal adhesion kinase and insulin-like growth factor-I receptor

Yuko Sato*, Hoang Anh Vu, Yuuichi Beppu, Hoang Thanh Chi, Kousuke Sasaki, Hideaki Yamamoto, Phan Thi Xinh, Takashi Tanii, Yukihiko Hara, Toshiki Watanabe, Iwao Ohdomari

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

39 Citations (Scopus)

Abstract

The exact molecular mechanism by which epigallocatechin gallate (EGCG) suppresses human pancreatic cancer cell proliferation is unclear. We show here that EGCG-treated pancreatic cancer cells AsPC-1 and BxPC-3 decrease cell adhesion ability on micro-pattern dots, accompanied by dephosphorylations of both focal adhesion kinase (FAK) and insulin-like growth factor-1 receptor (IGF-1R) whereas retained the activations of mitogen-activated protein kinase and mammalian target of rapamycin. The growth of AsPC-1 and BxPC-3 cells can be significantly suppressed by EGCG treatment alone in a dose-dependent manner. At a dose of 100M which completely abolishes activations of FAK and IGF-1R, EGCG suppresses more than 50 of cell proliferation without evidence of apoptosis analyzed by PARP cleavage. Finally, the MEK1/2 inhibitor U0126 enhances growth-suppressive effect of EGCG. Our data suggests that blocking FAK and IGF-1R by EGCG could prove valuable for targeted therapy, which can be used in combination with other therapies, for pancreatic cancer.

Original languageEnglish
Article number290516
JournalJournal of Biomedicine and Biotechnology
Volume2010
DOIs
Publication statusPublished - 2010

ASJC Scopus subject areas

  • Biotechnology
  • Molecular Medicine
  • Molecular Biology
  • Genetics
  • Health, Toxicology and Mutagenesis

Fingerprint

Dive into the research topics of 'Green tea epigallocatechin gallate exhibits anticancer effect in human pancreatic carcinoma cells via the inhibition of both focal adhesion kinase and insulin-like growth factor-I receptor'. Together they form a unique fingerprint.

Cite this