Guided Image Filtering with Arbitrary Window Function

Norishige Fukushima, Kenjiro Sugimoto, Sei Ichiro Kamata

Research output: Chapter in Book/Report/Conference proceedingConference contribution

25 Citations (Scopus)

Abstract

In this paper, we propose an extension of guided image filtering to support arbitrary window functions. The guided image filtering is a fast edge-preserving filter based on a local linearity assumption. The filter supports not only image smoothing but also edge enhancement and image interpolation. The guided image filter assumes that an input image is a local linear transformation of a guidance image, and the assumption is supported in a local finite region. For realizing the supposition, the guided image filtering consists of a stack of box filtering. The limitation of the guided image filtering is flexibilities of kernel shape setting. Therefore, we generalize the formulation of the guide image filter by using the idea of window functions in image signal processing to represent arbitrary kernel shapes. Also, we reveal the relationship between the guided image filtering and the variants of this filter.

Original languageEnglish
Title of host publication2018 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2018 - Proceedings
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages1523-1527
Number of pages5
ISBN (Print)9781538646588
DOIs
Publication statusPublished - 2018 Sept 10
Event2018 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2018 - Calgary, Canada
Duration: 2018 Apr 152018 Apr 20

Publication series

NameICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings
Volume2018-April
ISSN (Print)1520-6149

Other

Other2018 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2018
Country/TerritoryCanada
CityCalgary
Period18/4/1518/4/20

Keywords

  • Arbitrary windowed guided image filter
  • Edge-preserving filter
  • Guided image filter
  • Linear regression
  • Window function

ASJC Scopus subject areas

  • Software
  • Signal Processing
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Guided Image Filtering with Arbitrary Window Function'. Together they form a unique fingerprint.

Cite this