TY - JOUR
T1 - Hidden fermionic excitation in the superconductivity of the strongly attractive Hubbard model
AU - Sakai, Shiro
AU - Civelli, Marcello
AU - Nomura, Yusuke
AU - Imada, Masatoshi
N1 - Publisher Copyright:
© 2015 American Physical Society.
PY - 2015/11/4
Y1 - 2015/11/4
N2 - We study the attractive Hubbard model within the dynamical mean-field theory, to elucidate how the pseudogap and superconductivity at strong attractive interaction are related to those found in the repulsive Hubbard model, and thereby to bridge cold fermions and cuprate high-temperature superconductors from a microscopic point of view. We propose that a unified understanding is obtained by investigating single-particle excitation dynamics, in which emergent and hidden fermions coupled to quasiparticles consistently account for the numerical results in both attractive and repulsive cases. In the attractive case, the quasiparticle dynamics is observable by virtually breaking a tightly bound pair, where we find two qualitatively different regions crossing over each other within the strong-coupling superconductivity phase. Among them, the region close to the critical temperature shares characteristic dynamics with the repulsive interaction case, where the normal and anomalous parts of the self-energy show strong low-energy peaks while they are hidden in the quasiparticle spectral weight. These prominent self-energy peaks are understood by the coupling of the quasiparticle to the hidden fermionic excitation, emergent from a strong-coupling effect. The pseudogap above the critical temperature is also accounted for by the same hidden fermion.
AB - We study the attractive Hubbard model within the dynamical mean-field theory, to elucidate how the pseudogap and superconductivity at strong attractive interaction are related to those found in the repulsive Hubbard model, and thereby to bridge cold fermions and cuprate high-temperature superconductors from a microscopic point of view. We propose that a unified understanding is obtained by investigating single-particle excitation dynamics, in which emergent and hidden fermions coupled to quasiparticles consistently account for the numerical results in both attractive and repulsive cases. In the attractive case, the quasiparticle dynamics is observable by virtually breaking a tightly bound pair, where we find two qualitatively different regions crossing over each other within the strong-coupling superconductivity phase. Among them, the region close to the critical temperature shares characteristic dynamics with the repulsive interaction case, where the normal and anomalous parts of the self-energy show strong low-energy peaks while they are hidden in the quasiparticle spectral weight. These prominent self-energy peaks are understood by the coupling of the quasiparticle to the hidden fermionic excitation, emergent from a strong-coupling effect. The pseudogap above the critical temperature is also accounted for by the same hidden fermion.
UR - http://www.scopus.com/inward/record.url?scp=84948671520&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84948671520&partnerID=8YFLogxK
U2 - 10.1103/PhysRevB.92.180503
DO - 10.1103/PhysRevB.92.180503
M3 - Article
AN - SCOPUS:84948671520
SN - 1098-0121
VL - 92
JO - Physical Review B - Condensed Matter and Materials Physics
JF - Physical Review B - Condensed Matter and Materials Physics
IS - 18
M1 - 180503
ER -