Highly controllable three-dimensional sheath flow device for fabrication of artificial capillary vessels

J. Ito, R. Sekine, Donghyun Yoon, Y. Nakamura, H. Oku, H. Nansai, T. Chikasawa, T. Goto, Tetsushi Sekiguchi, Naoya Takeda, Shuichi Shoji

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

This paper reports a highly controllable three-dimensional (3D) sheath flow device for fabrication of artificial capillary vessels. Three step sheath injection type 3D flow device which realizes wide core and sheath structure variations by simply flow rate control was applied to fabricate double-layer coaxial Core-Sheath microfibers applicable for long micro capillary vessels by aligning and cultivating vascular endothelial cells. As a result, about a 3-centimeter-long microfiber which has the vascular endothelial cells fused mutually in the center was successfully formed after three days culture.

Original languageEnglish
Title of host publicationProceedings of the IEEE International Conference on Micro Electro Mechanical Systems (MEMS)
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages480-483
Number of pages4
Volume2015-February
EditionFebruary
DOIs
Publication statusPublished - 2015 Feb 26
Event2015 28th IEEE International Conference on Micro Electro Mechanical Systems, MEMS 2015 - Estoril, Portugal
Duration: 2015 Jan 182015 Jan 22

Other

Other2015 28th IEEE International Conference on Micro Electro Mechanical Systems, MEMS 2015
Country/TerritoryPortugal
CityEstoril
Period15/1/1815/1/22

ASJC Scopus subject areas

  • Electrical and Electronic Engineering
  • Mechanical Engineering
  • Condensed Matter Physics
  • Electronic, Optical and Magnetic Materials

Fingerprint

Dive into the research topics of 'Highly controllable three-dimensional sheath flow device for fabrication of artificial capillary vessels'. Together they form a unique fingerprint.

Cite this