Hybrid bonding of Cu/Sn microbump and adhesive with silica filler for 3D interconnection of single micron pitch

Masaki Ohyama, Masatsugu Nimura, Jun Mizuno, Shuichi Shoji, Mamoru Tamura, Tomoyuki Enomoto, Akitsu Shigetou

Research output: Chapter in Book/Report/Conference proceedingConference contribution

11 Citations (Scopus)

Abstract

This paper describes hybrid bonding technology of Cu/Sn microbumps and adhesive with silica filler for three-dimensional (3D) interconnection of single-micron pitch. We fabricated bonding structure composed of 8-μm pitch Cu/Sn bumps and uncured adhesive with by using combination process of resin-chemical mechanical polishing (CMP) and O2/CHF3 plasma etching. Adhesive with silica filler is conventionally used for reduction of mechanical stress around microbumps by lowering CTE of underfill. With the bonding structure, the Cu/Sn microbumps and the adhesive were simultaneously bonded in N2 atmospheric pressure after surface treatment of Ar/H2 plasma irradiation. Results of scanning electron microscope (SEM) and scanning ion microscope (SIM) analyses show that Sn of microbumps was properly wetted on Cu film without resin and silica filler trapping. The adhesive was also bonded on Cu film in 6-μm gap between chips. The shear strength was 17.85 MPa. Therefore, proposed method is highly effective for hybrid bonding of single-micron pitch aimed at future ultra-high density 3D interconnection.

Original languageEnglish
Title of host publication2015 IEEE 65th Electronic Components and Technology Conference, ECTC 2015
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages325-330
Number of pages6
ISBN (Electronic)9781479986095
DOIs
Publication statusPublished - 2015 Jul 15
Event2015 65th IEEE Electronic Components and Technology Conference, ECTC 2015 - San Diego, United States
Duration: 2015 May 262015 May 29

Publication series

NameProceedings - Electronic Components and Technology Conference
Volume2015-July
ISSN (Print)0569-5503

Other

Other2015 65th IEEE Electronic Components and Technology Conference, ECTC 2015
Country/TerritoryUnited States
CitySan Diego
Period15/5/2615/5/29

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Hybrid bonding of Cu/Sn microbump and adhesive with silica filler for 3D interconnection of single micron pitch'. Together they form a unique fingerprint.

Cite this