Hybrid film for self-adhesion and shape-controlling

Sota Shimbo*, Toshinori Fujie, Eiji Iwase

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contribution

1 Citation (Scopus)

Abstract

We report a hybrid film that is composed of 'polymer nanosheet' with a hundreds-of-nanometer-thick film and 'punched film' with hundreds-of-micrometer-thick film. Because of the thickness, the nanosheet is able to adhere to biological tissues without a glue, but is sometimes difficult to handling. Our hybrid film is established both adhesiveness of the nanosheet and shape-controlling ability of the punched film. In this paper, first, we fabricated the cylindrical-shaped hybrid film. Next, we achieved the hybrid film unfold into flat shape. Finally, we evaluated the adhesion force of the hybrid film and confirmed that the hybrid film can adhere to biological tissues.

Original languageEnglish
Title of host publication2017 IEEE 30th International Conference on Micro Electro Mechanical Systems, MEMS 2017
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages624-627
Number of pages4
ISBN (Electronic)9781509050789
DOIs
Publication statusPublished - 2017 Feb 23
Event30th IEEE International Conference on Micro Electro Mechanical Systems, MEMS 2017 - Las Vegas, United States
Duration: 2017 Jan 222017 Jan 26

Publication series

NameProceedings of the IEEE International Conference on Micro Electro Mechanical Systems (MEMS)
ISSN (Print)1084-6999

Other

Other30th IEEE International Conference on Micro Electro Mechanical Systems, MEMS 2017
Country/TerritoryUnited States
CityLas Vegas
Period17/1/2217/1/26

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics
  • Mechanical Engineering
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Hybrid film for self-adhesion and shape-controlling'. Together they form a unique fingerprint.

Cite this