TY - JOUR
T1 - Hypocretin/orexin peptide signaling in the ascending arousal system
T2 - Elevation of intracellular calcium in the mouse dorsal raphe and laterodorsal tegmentum
AU - Kohlmeier, Kristi A.
AU - Inoue, Takafumi
AU - Leonard, Christopher S.
PY - 2004/7
Y1 - 2004/7
N2 - Dysfunction of the hypocretin/orexin (Hcrt/Orx) peptide system is closely linked to the sleep disorder narcolepsy, suggesting that it is also central to the normal regulation of sleep and wakefulness. Indeed, Hcrt/Orx peptides produce long-lasting excitation of arousal-related neurons, including those in the laterodorsal tegmentum (LDT) and the dorsal raphe (DR), although the mechanisms underlying these actions are not understood. Since Hcrt/Orx mobilizes intracellular calcium ([Ca2+]i) in cells transfected with orexin receptors and since receptor-mediated Ca2+ transients are ubiquitous signaling mechanisms, we investigated whether Hcrt/Orx regulates [Ca2+]i in the LDT and DR. Changes in [Ca 2+]i were monitored by fluorescence changes of fura-2 AM loaded cells in young mouse brain slices. We found Hcrt/Orx (Orexin-A, 30-1,000 nM) evoked long-lasting increases in [Ca2+]i with differing temporal profiles ranging from spiking to smooth plateaus. A fragment of Hcrt/Orx (16-33) failed to evoke changes in [Ca2+]i and changes were not blocked by TTX or ionotropic glutamate receptor antagonists, suggesting they resulted from specific activation of postsynaptic orexin receptors. Unlike orexin receptor-transfected cells, Hcrt/Orx-responses were not attenuated by depletion of Ca2+ stores with cyclopiazonic acid (CPA; 3-30 μM), thapsigargin (3 μM), or ryanodine (20 μM), although store-depletion by either CPA or ryanodine blocked Ca2+ mobilization by the metabotropic glutamate receptor agonist (±)-1-aminocyclopentane- trans-1,3-dicarboxylic acid (trans-ACPD; 30 μM). In contrast, Hcrt/Orx responses were strongly attenuated by lowering extracellular Ca2+ (∼20 μM) but were not inhibited by concentrations of KB-R7943 (10 μM) selective for blockade of sodium/calcium exchange. Nifedipine (10 μM), inhibited Hcrt/Orx responses but was more effective at abolishing spiking than plateau responses. Bay K 8644 (5-10 μM), an L-type calcium channel agonist, potentiated responses. Finally, responses were attenuated by inhibitors of protein kinase C (PKC) but not by inhibitors of adenylyl cyclase. Collectively, our findings indicate that Hcrt/Orx signaling in the reticular activating system involves elevation of [Ca2+]i by a PKC-involved influx of Ca2+ across the plasma membrane, in part, via L-type calcium channels. Thus the physiological release of Hcrt/Orx may help regulate Ca 2+-dependent processes such as gene expression and NO production in the LDT and DR in relation with behavioral state. Accordingly, the loss of Hcrt/Orx signaling in narcolepsy would be expected to disrupt calcium-dependent processes in these and other target structures.
AB - Dysfunction of the hypocretin/orexin (Hcrt/Orx) peptide system is closely linked to the sleep disorder narcolepsy, suggesting that it is also central to the normal regulation of sleep and wakefulness. Indeed, Hcrt/Orx peptides produce long-lasting excitation of arousal-related neurons, including those in the laterodorsal tegmentum (LDT) and the dorsal raphe (DR), although the mechanisms underlying these actions are not understood. Since Hcrt/Orx mobilizes intracellular calcium ([Ca2+]i) in cells transfected with orexin receptors and since receptor-mediated Ca2+ transients are ubiquitous signaling mechanisms, we investigated whether Hcrt/Orx regulates [Ca2+]i in the LDT and DR. Changes in [Ca 2+]i were monitored by fluorescence changes of fura-2 AM loaded cells in young mouse brain slices. We found Hcrt/Orx (Orexin-A, 30-1,000 nM) evoked long-lasting increases in [Ca2+]i with differing temporal profiles ranging from spiking to smooth plateaus. A fragment of Hcrt/Orx (16-33) failed to evoke changes in [Ca2+]i and changes were not blocked by TTX or ionotropic glutamate receptor antagonists, suggesting they resulted from specific activation of postsynaptic orexin receptors. Unlike orexin receptor-transfected cells, Hcrt/Orx-responses were not attenuated by depletion of Ca2+ stores with cyclopiazonic acid (CPA; 3-30 μM), thapsigargin (3 μM), or ryanodine (20 μM), although store-depletion by either CPA or ryanodine blocked Ca2+ mobilization by the metabotropic glutamate receptor agonist (±)-1-aminocyclopentane- trans-1,3-dicarboxylic acid (trans-ACPD; 30 μM). In contrast, Hcrt/Orx responses were strongly attenuated by lowering extracellular Ca2+ (∼20 μM) but were not inhibited by concentrations of KB-R7943 (10 μM) selective for blockade of sodium/calcium exchange. Nifedipine (10 μM), inhibited Hcrt/Orx responses but was more effective at abolishing spiking than plateau responses. Bay K 8644 (5-10 μM), an L-type calcium channel agonist, potentiated responses. Finally, responses were attenuated by inhibitors of protein kinase C (PKC) but not by inhibitors of adenylyl cyclase. Collectively, our findings indicate that Hcrt/Orx signaling in the reticular activating system involves elevation of [Ca2+]i by a PKC-involved influx of Ca2+ across the plasma membrane, in part, via L-type calcium channels. Thus the physiological release of Hcrt/Orx may help regulate Ca 2+-dependent processes such as gene expression and NO production in the LDT and DR in relation with behavioral state. Accordingly, the loss of Hcrt/Orx signaling in narcolepsy would be expected to disrupt calcium-dependent processes in these and other target structures.
UR - http://www.scopus.com/inward/record.url?scp=3042552335&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=3042552335&partnerID=8YFLogxK
U2 - 10.1152/jn.00076.2004
DO - 10.1152/jn.00076.2004
M3 - Article
C2 - 14999052
AN - SCOPUS:3042552335
SN - 0022-3077
VL - 92
SP - 221
EP - 235
JO - Journal of Neurophysiology
JF - Journal of Neurophysiology
IS - 1
ER -