TY - JOUR
T1 - Identification and functional analysis of the genes encoding dibenzothiophene-desulfurizing enzymes from thermophilic bacteria
AU - Kirimura, Kohtaro
AU - Harada, Koji
AU - Iwasawa, Hidekazu
AU - Tanaka, Takeomi
AU - Iwasaki, Yuichiro
AU - Furuya, Toshiki
AU - Ishii, Yoshitaka
AU - Kino, Kuniki
N1 - Funding Information:
Acknowledgements This work was supported in part by the Japan Cooperation Center, Petroleum subsidized by the Ministry of Economy, Trade and Industry, and by Grants-in-Aid for Scientific Research (13650859) from the Ministry of Education, Science, Sports, and Culture of Japan, and by Waseda University Grant for Special Research Projects (2001A-557 and 2001A-863).
PY - 2004/11
Y1 - 2004/11
N2 - Thermophilic bacteria Bacillus subtilis WU-S2B and Mycobacterium phlei WU-F1 desulfurize dibenzothiophene (DBT) and alkylated DBTs through specific cleavage of the carbon-sulfur bonds over a temperature range up to 52°C. In order to identify and functionally analyze the DBT-desulfurization genes, the gene cluster containing bdsA, bdsB, and bdsC was cloned from B. subtilis WU-S2B. The nucleotide and amino acid sequences of bdsABC show homologies to those of the other known DBT-desulfurization genes and enzymes; e.g. a nucleotide sequence homo logy of 61.0% to dszABC of the mesophilic bacterium Rhodococcus sp. IGTS8 and 57.8% to tdsABC of the thermophilic bacterium Paenibacillus sp. A11-2. Deletion and subcloning analysis of bdsABC revealed that the gene products of bdsC, bdsA and bdsB oxidized DBT to DBT sulfone (DBTO2), converted DBTO2 to 2′-hydroxybiphenyl-2-sulfinate (HBPSi), and desulfurized HBPSi to 2-hydroxybiphenyl (2-HBP), respectively. Resting cells of a recombinant Escherichia coli JM109 harboring bdsABC converted DBT to 2-HBP over a temperature range of 30-52°C, indicating that the gene products of bdsABC were functional in the recombinant. The activities of DBT degradation at 50°C and DBT desulfurization (2-HBP production) at 40°C in resting cells of the recombinant were approximately five times and twice, respectively, as high as those in B. subtilis WU-S2B. The recombinant E. coli cells also degraded alkylated DBTs, such as 2,8-dimethylDBT and 4,6-dimethylDBT. The nucleotide sequences of B. subtilis WU-S2B bdsABC and the corresponding genes from M. phlei WU-F1 were found to be completely identical to each other although the strains are genetically different.
AB - Thermophilic bacteria Bacillus subtilis WU-S2B and Mycobacterium phlei WU-F1 desulfurize dibenzothiophene (DBT) and alkylated DBTs through specific cleavage of the carbon-sulfur bonds over a temperature range up to 52°C. In order to identify and functionally analyze the DBT-desulfurization genes, the gene cluster containing bdsA, bdsB, and bdsC was cloned from B. subtilis WU-S2B. The nucleotide and amino acid sequences of bdsABC show homologies to those of the other known DBT-desulfurization genes and enzymes; e.g. a nucleotide sequence homo logy of 61.0% to dszABC of the mesophilic bacterium Rhodococcus sp. IGTS8 and 57.8% to tdsABC of the thermophilic bacterium Paenibacillus sp. A11-2. Deletion and subcloning analysis of bdsABC revealed that the gene products of bdsC, bdsA and bdsB oxidized DBT to DBT sulfone (DBTO2), converted DBTO2 to 2′-hydroxybiphenyl-2-sulfinate (HBPSi), and desulfurized HBPSi to 2-hydroxybiphenyl (2-HBP), respectively. Resting cells of a recombinant Escherichia coli JM109 harboring bdsABC converted DBT to 2-HBP over a temperature range of 30-52°C, indicating that the gene products of bdsABC were functional in the recombinant. The activities of DBT degradation at 50°C and DBT desulfurization (2-HBP production) at 40°C in resting cells of the recombinant were approximately five times and twice, respectively, as high as those in B. subtilis WU-S2B. The recombinant E. coli cells also degraded alkylated DBTs, such as 2,8-dimethylDBT and 4,6-dimethylDBT. The nucleotide sequences of B. subtilis WU-S2B bdsABC and the corresponding genes from M. phlei WU-F1 were found to be completely identical to each other although the strains are genetically different.
UR - http://www.scopus.com/inward/record.url?scp=5144225412&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=5144225412&partnerID=8YFLogxK
U2 - 10.1007/s00253-004-1652-0
DO - 10.1007/s00253-004-1652-0
M3 - Article
C2 - 15221222
AN - SCOPUS:5144225412
SN - 0175-7598
VL - 65
SP - 703
EP - 713
JO - Applied Microbiology and Biotechnology
JF - Applied Microbiology and Biotechnology
IS - 6
ER -