Identification of two cancer stem cell-like populations in triple-negative breast cancer xenografts

Jun Nakayama*, Hiroko Matsunaga, Koji Arikawa, Takuya Yoda, Masahito Hosokawa, Haruko Takeyama, Yusuke Yamamoto, Kentaro Semba*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

4 Citations (Scopus)

Abstract

Gene expression analysis at the single-cell level by next generation sequencing has revealed the existence of clonal dissemination and microheterogeneity in cancer metastasis. The current spatial analysis technologies can elucidate the heterogeneity of cell-cell interactions in situ. To reveal the regional and expressional heterogeneity in primary tumors and metastases, we performed transcriptomic analysis of microtissues dissected from a triple-negative breast cancer (TNBC) cell line MDA-MB-231 xenograft model with our automated tissue microdissection punching technology. This multiple-microtissue transcriptome analysis revealed three cancer cell-type clusters in the primary tumor and axillary lymph node metastasis, two of which were cancer stem cell (CSC)-like clusters (CD44/MYC-high, HMGA1-high). Reanalysis of public single-cell RNA-seq (scRNA-seq) datasets confirmed that the two CSC-like populations existed both in TNBC xenograft models and TNBC patients. The diversity of these multiple CSC-like populations may cause differential anticancer drug resistance, increasing the difficulty of curing this cancer.

Original languageEnglish
Article numberdmm049538
JournalDMM Disease Models and Mechanisms
Volume15
Issue number6
DOIs
Publication statusPublished - 2022

ASJC Scopus subject areas

  • Neuroscience (miscellaneous)
  • Medicine (miscellaneous)
  • Immunology and Microbiology (miscellaneous)
  • Biochemistry, Genetics and Molecular Biology(all)

Fingerprint

Dive into the research topics of 'Identification of two cancer stem cell-like populations in triple-negative breast cancer xenografts'. Together they form a unique fingerprint.

Cite this