TY - JOUR
T1 - Impact of linker in polypyrrole/quinone conducting redox polymers
AU - Karlsson, Christoffer
AU - Huang, Hao
AU - Strømme, Maria
AU - Gogoll, Adolf
AU - Sjödin, Martin
PY - 2015
Y1 - 2015
N2 - Organic conducting redox polymers are being investigated as the active component for secondary battery applications, as they have the potential to solve two of the main problems with small molecule-based organic electrodes for electrical energy storage, viz dissolution of the active compound in the electrolyte, and slow charge transport through the material. Herein we report the synthesis of a series of conducting redox polymers based on polypyrrole with hydroquinone pendant groups that are attached to the backbone via different linkers, and we investigate the impact of the linker on the interaction between the backbone and the pendant groups. For the directly linked polymer, oxidation of the pendant groups leads to a decrease of bipolaron absorbance, as well as a decrease in mass of the polymer film, both of which are reversible. The origin of these effects is discussed in light of the influence of the linker unit, electrolyte polarity, and electrolyte salt. For the longest linkers in the series, no interaction was observed, which was deemed the most beneficial situation for energy storage applications, as the energy storage capacity of the pendant groups can be utilized without disturbing the conductivity of the polymer backbone.
AB - Organic conducting redox polymers are being investigated as the active component for secondary battery applications, as they have the potential to solve two of the main problems with small molecule-based organic electrodes for electrical energy storage, viz dissolution of the active compound in the electrolyte, and slow charge transport through the material. Herein we report the synthesis of a series of conducting redox polymers based on polypyrrole with hydroquinone pendant groups that are attached to the backbone via different linkers, and we investigate the impact of the linker on the interaction between the backbone and the pendant groups. For the directly linked polymer, oxidation of the pendant groups leads to a decrease of bipolaron absorbance, as well as a decrease in mass of the polymer film, both of which are reversible. The origin of these effects is discussed in light of the influence of the linker unit, electrolyte polarity, and electrolyte salt. For the longest linkers in the series, no interaction was observed, which was deemed the most beneficial situation for energy storage applications, as the energy storage capacity of the pendant groups can be utilized without disturbing the conductivity of the polymer backbone.
UR - http://www.scopus.com/inward/record.url?scp=84921913777&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84921913777&partnerID=8YFLogxK
U2 - 10.1039/c4ra15708g
DO - 10.1039/c4ra15708g
M3 - Article
AN - SCOPUS:84921913777
SN - 2046-2069
VL - 5
SP - 11309
EP - 11316
JO - RSC Advances
JF - RSC Advances
IS - 15
ER -