Abstract
For real-world deployment of automatic speech recognition (ASR), the system is desired to be capable of fast inference while relieving the requirement of computational resources. The recently proposed end-to-end ASR system based on mask-predict with connectionist temporal classification (CTC), Mask-CTC, fulfills this demand by generating tokens in a non-autoregressive fashion. While Mask- CTC achieves remarkably fast inference speed, its recognition performance falls behind that of conventional autoregressive (AR) systems. To boost the performance of Mask-CTC, we first propose to enhance the encoder network architecture by employing a recently proposed architecture called Conformer. Next, we propose new training and decoding methods by introducing auxiliary objective to predict the length of a partial target sequence, which allows the model to delete or insert tokens during inference. Experimental results on different ASR tasks show that the proposed approaches improve Mask-CTC significantly, outperforming a standard CTC model (15.5%!9.1% WER on WSJ). Moreover, Mask- CTC now achieves competitive results to AR models with no degradation of inference speed (< 0.1 RTF using CPU). We also show a potential application of Mask-CTC to end-to-end speech translation.
Original language | English |
---|---|
Pages (from-to) | 8363-8367 |
Number of pages | 5 |
Journal | ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings |
Volume | 2021-June |
DOIs | |
Publication status | Published - 2021 |
Event | 2021 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2021 - Virtual, Toronto, Canada Duration: 2021 Jun 6 → 2021 Jun 11 |
Keywords
- Connectionist temporal classification
- End-to-end speech recognition
- End-to-end speech translation
- Non-autoregressive sequence generation
ASJC Scopus subject areas
- Software
- Signal Processing
- Electrical and Electronic Engineering