Abstract
In this paper, we apply a general and discriminative feature”GIF” (Genetic Algorithm based Informative feature) to lipreading (visual speech recognition), and improve the lipreading performance using speaker adaptation. The feature extraction method consists of two transforms, which convert an input vector into GIF for recognition. In the speaker adaptation, MAP (Maximum A Posteriori) adaptation is used to adapt a recognition model to a target speaker. Recognition experiments of continuous digit utterances were conducted using an audio-visual corpus CENSREC-1-AV [1] including more than 268,000 lip images. At first, we compared the GIF-based method with the baseline method employing conventional eigenlip features, using two kinds of images: pictures in the database around speakers' mouth, and extracted images only containing lips. Secondly, we evaluated the effectiveness of speaker adaptation for lipreading. The result of comparison shows that the GIF-based approach achieved slightly better than the baseline method. And it is found using the mouth-around images is more suitable than lip-only images. Furthermore, the result of speaker adaptation shows that speaker adaptation significantly improved recognition accuracy in the GIF-based method; after the adaptation, the recognition rate drastically increased from approximately 30% to 70%.
Original language | English |
---|---|
Pages | 221-226 |
Number of pages | 6 |
Publication status | Published - 2013 |
Externally published | Yes |
Event | 2013 International Conference on Auditory-Visual Speech Processing, AVSP 2013 - Annecy, France Duration: 2013 Aug 29 → 2013 Sept 1 |
Conference
Conference | 2013 International Conference on Auditory-Visual Speech Processing, AVSP 2013 |
---|---|
Country/Territory | France |
City | Annecy |
Period | 13/8/29 → 13/9/1 |
Keywords
- CENSREC
- discriminative feature
- lip extraction
- lipreading
- speaker adaptation
ASJC Scopus subject areas
- Language and Linguistics
- Speech and Hearing
- Otorhinolaryngology