TY - JOUR
T1 - Improvement of Strength and Energy Absorption Properties of Porous Aluminum Alloy with Aligned Unidirectional Pores Using Equal-Channel Angular Extrusion
AU - Yoshida, Tomonori
AU - Muto, Daiki
AU - Tamai, Tomoya
AU - Suzuki, Shinsuke
N1 - Funding Information:
The A6061 billets used in this study were provided by UACJ Corporation. This study was carried out with the support of Grant-in-Aid from The Light Metal Educational Foundation, Inc., Hitachi Metals-Materials Science Foundation, Suzuki Foundation, and Kimura Foundry Co. Ltd.
Publisher Copyright:
© 2018, The Minerals, Metals & Materials Society and ASM International.
PY - 2018/6/1
Y1 - 2018/6/1
N2 - Porous aluminum alloy with aligned unidirectional pores was fabricated by dipping A1050 tubes into A6061 semi-solid slurry. The porous aluminum alloy was processed through Equal-channel Angular Extrusion (ECAE) while preventing cracking and maintaining both the pore size and porosity by setting the insert material and loading back pressure. The specific compressive yield strength of the sample aged after 13 passes of ECAE was approximately 2.5 times higher than that of the solid-solutionized sample without ECAE. Both the energy absorption EV and energy absorption efficiency ηV after four passes of ECAE were approximately 1.2 times higher than that of the solid-solutionized sample without ECAE. The specific yield strength was improved via work hardening and precipitation following dynamic aging during ECAE. EV was improved by the application of high compressive stress at the beginning of the compression owing to work hardening via ECAE. ηV was improved by a steep increase of stress at low compressive strain and by a gradual increase of stress in the range up to 50 pct of compressive strain. The gradual increase of stress was caused by continuous shear fracture in the metallic part, which was due to the high dislocation density and existence of unidirectional pores parallel to the compressive direction in the structure.
AB - Porous aluminum alloy with aligned unidirectional pores was fabricated by dipping A1050 tubes into A6061 semi-solid slurry. The porous aluminum alloy was processed through Equal-channel Angular Extrusion (ECAE) while preventing cracking and maintaining both the pore size and porosity by setting the insert material and loading back pressure. The specific compressive yield strength of the sample aged after 13 passes of ECAE was approximately 2.5 times higher than that of the solid-solutionized sample without ECAE. Both the energy absorption EV and energy absorption efficiency ηV after four passes of ECAE were approximately 1.2 times higher than that of the solid-solutionized sample without ECAE. The specific yield strength was improved via work hardening and precipitation following dynamic aging during ECAE. EV was improved by the application of high compressive stress at the beginning of the compression owing to work hardening via ECAE. ηV was improved by a steep increase of stress at low compressive strain and by a gradual increase of stress in the range up to 50 pct of compressive strain. The gradual increase of stress was caused by continuous shear fracture in the metallic part, which was due to the high dislocation density and existence of unidirectional pores parallel to the compressive direction in the structure.
UR - http://www.scopus.com/inward/record.url?scp=85046300771&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85046300771&partnerID=8YFLogxK
U2 - 10.1007/s11661-018-4584-5
DO - 10.1007/s11661-018-4584-5
M3 - Article
AN - SCOPUS:85046300771
SN - 1073-5623
VL - 49
SP - 2463
EP - 2470
JO - Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science
JF - Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science
IS - 6
ER -