Incremental short maximal exercise increases urinary liver-type fatty acid-binding protein in adults without CKD

Keisei Kosaki, Atsuko Kamijo-Ikemori, Takeshi Sugaya, Shota Kumamoto, Koichiro Tanahashi, Hiroshi Kumagai, Kenjiro Kimura, Yugo Shibagaki, Seiji Maeda*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

4 Citations (Scopus)

Abstract

Exercise-induced redistribution of tissue blood flow decreases the renal blood flow in an exercise intensity-dependent manner. However, the acute effects of incremental short maximal exercise on renal tubular conditions remain unknown. The purpose of this study was to investigate the acute effects of incremental short maximal exercise on the urinary liver-type fatty acid-binding protein, which is a highly sensitive tubular biomarker that correlates excellently with peritubular capillary blood flow. A total of 116 adults (aged 24-83 years) without chronic kidney disease performed the incremental short maximal exercise using a cycling ergometer, wherein the exercise sequence consisted of commencing with a 2-min workout period at 20 W (as a warm-up period) and then followed by a 10-20 W increase every 1 minute until termination criteria were reached. Urinary samples were gathered before and immediately after the exercise to evaluate the concentrations of urinary creatinine, albumin, and liver-type fatty acid-binding protein. Urinary excretion levels of albumin and liver-type fatty acid-binding protein were significantly increased post-exercise (P <.001 and P =.008, respectively). Furthermore, the % change in urinary liver-type fatty acid-binding protein levels after exercise was found to correlate independently with age, estimated glomerular filtration rate at baseline, and the % change in urinary albumin (Model R2 = 0.451, P <.001). Our findings suggest that incremental short maximal exercise may lead to acute slightly adverse effects on tubular conditions, especially in young adults or adults with lower renal function, even without chronic kidney disease.

Original languageEnglish
Pages (from-to)709-715
Number of pages7
JournalScandinavian Journal of Medicine and Science in Sports
Volume30
Issue number4
DOIs
Publication statusPublished - 2020 Apr 1
Externally publishedYes

Keywords

  • blood flow redistribution
  • incremental short maximal exercise
  • liver-type fatty acid-binding protein
  • peritubular capillary blood flow
  • tubular biomarker

ASJC Scopus subject areas

  • Orthopedics and Sports Medicine
  • Physical Therapy, Sports Therapy and Rehabilitation

Fingerprint

Dive into the research topics of 'Incremental short maximal exercise increases urinary liver-type fatty acid-binding protein in adults without CKD'. Together they form a unique fingerprint.

Cite this